【題目】已知函數(shù).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)g(x)=f(x)﹣lnx有2個不同的極值點x1,x2(x1<x2),求證:.
【答案】(1)見解析;(2)見解析
【解析】
(1)求導(dǎo)得到,討論四種情況得到單調(diào)性.
(2)g(x)=alnxx﹣1,,得到x1+x2=a,x1x2=a,f(x1)+f(x2)﹣2x1x2=alna+lna﹣2a﹣2,設(shè)g(a)=alna+lna﹣2a﹣2,(a>4),根據(jù)函數(shù)的單調(diào)性得到答案.
(1),x>0,
(i)若a=1,0恒成立,故f(x)在(0,+∞)單調(diào)遞減,
(ii)當(dāng)a>1時,x∈(0,1)時,f′(x)<0,函數(shù)單調(diào)遞減,當(dāng)x∈(1,a),f′(x)>0,函數(shù)單調(diào)遞增,當(dāng)x∈(a,+∞),f′(x)<0,函數(shù)單調(diào)遞減,
(iii)0<a<1時,x∈(0,a)時,f′(x)<0,函數(shù)單調(diào)遞減,當(dāng)x∈(a,1),f′(x)>0,函數(shù)單調(diào)遞增,當(dāng)x∈(1,+∞),f′(x)<0,函數(shù)單調(diào)遞減,
(iv)當(dāng)a≤0時,x∈(0,1)時,f′(x)>0,函數(shù)單調(diào)遞增,當(dāng)x∈(1,+∞),f′(x)<0,函數(shù)單調(diào)遞減.
(2)g(x)=f(x)﹣lnx=alnxx﹣1,,
由題意可得,x2﹣ax+a=0與2個不同的根x1,x2(x1<x2),
則x1+x2=a>0,x1x2=a,△=a2﹣4a>0,所以a>4,
∴f(x1)+f(x2)﹣2x1x2=a(lnx1+lnx2)+a()+(lnx1+lnx2)﹣(x1+x2)﹣2﹣2x1x2=alna+lna﹣2a﹣2,
令g(a)=alna+lna﹣2a﹣2,(a>4),
則2=lna1>0,即g(a)在(4,+∞)上單調(diào)遞增,
所以g(a)>g(4)=5ln4﹣10=5(ln4﹣2)=5(ln4﹣lne2)=5.得證.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若方程有7個不同的實數(shù)解,則的取值范圍( )
A.(2,6)B.(6,9)C.(2,12)D.(4,13)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且四個頂點構(gòu)成的四邊形的面積是.
(1)求橢圓的方程;
(2)已知直線經(jīng)過點,且不垂直于軸,直線與橢圓交于,兩點,為的中點,直線與橢圓交于,兩點(是坐標(biāo)原點),求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年1月底因新型冠狀病毒感染的肺炎疫情形勢嚴峻,避免外出是減少相互交叉感染最有效的方式.在家中適當(dāng)鍛煉,合理休息,能夠提高自身免疫力,抵抗該種病毒.某小區(qū)為了調(diào)查“宅”家居民的運動情況,從該小區(qū)隨機抽取了100位成年人,記錄了他們某天的鍛煉時間,其頻率分布直方圖如下:
(1)求a的值,并估計這100位居民鍛煉時間的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);
(2)小張是該小區(qū)的一位居民,他記錄了自己“宅”家7天的鍛煉時長:
序號n | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
鍛煉時長m(單位:分鐘) | 10 | 15 | 12 | 20 | 30 | 25 | 35 |
(Ⅰ)根據(jù)數(shù)據(jù)求m關(guān)于n的線性回歸方程;
(Ⅱ)若(是(1)中的平均值),則當(dāng)天被稱為“有效運動日”.估計小張“宅”家第8天是否是“有效運動日”?
附;在線性回歸方程中,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓長軸長為4,右焦點到左頂點的距離為3.
(1)求橢圓的方程;
(2)設(shè)過原點的直線交橢圓于兩點(不在坐標(biāo)軸上),連接并延長交橢圓于點,若,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某總公司在A,B兩地分別有甲、乙兩個下屬公司同時生產(chǎn)某種新能源產(chǎn)品(這兩個公司每天都固定生產(chǎn)50件產(chǎn)品),所生產(chǎn)的產(chǎn)品均在本地銷售.產(chǎn)品進入市場之前需要對產(chǎn)品進行性能檢測,得分低于80分的定為次品,需要返廠再加工;得分不低于80分的定為正品,可以進入市場.檢測員統(tǒng)計了甲、乙兩個下屬公司100天的生產(chǎn)情況及每件產(chǎn)品盈利虧損情況,數(shù)據(jù)如下表所示:
表1:
甲公司 | 得分 | |||||
件數(shù) | 10 | 10 | 40 | 40 | 50 | |
天數(shù) | 10 | 10 | 10 | 10 | 80 |
表2:
乙公司 | 得分 | |||||
件數(shù) | 10 | 5 | 40 | 45 | 50 | |
天數(shù) | 20 | 10 | 20 | 10 | 70 |
表3:
每件正品 | 每件次品 | |
甲公司 | 盈2萬元 | 虧3萬元 |
乙公司 | 盈3萬元 | 虧3.5萬元 |
(1)分別求甲、乙兩個公司這100天生產(chǎn)的產(chǎn)品的正品率(用百分數(shù)表示);
(2)試問甲乙兩個公司這100天生產(chǎn)的產(chǎn)品的總利潤哪個更大?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,為的中點,將沿直線翻折成,連結(jié),為的中點,則在翻折過程中,下列說法中所有正確的序號是_______.
①存在某個位置,使得;
②翻折過程中,的長是定值;
③若,則;
④若,當(dāng)三棱錐的體積最大時,三棱錐的外接球的表面積是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級政府相繼啟動重大突發(fā)公共衛(wèi)生事件一級響應(yīng),全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯誤的是( )
A.月下旬新增確診人數(shù)呈波動下降趨勢
B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)
C.月日至月日新增確診人數(shù)波動最大
D.我國新型冠狀病毒肺炎累計確診人數(shù)在月日左右達到峰值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com