【題目】2018年2月22日,在韓國平昌冬奧會短道速滑男子米比賽中,中國選手武大靖以連續(xù)打破世界紀錄的優(yōu)異表現(xiàn),為中國代表隊奪得了本屆冬奧會的首枚金牌,也創(chuàng)造了中國男子冰上競速項目在冬奧會金牌零的突破.根據(jù)短道速滑男子米的比賽規(guī)則,運動員自出發(fā)點出發(fā)進入滑行階段后,每滑行一圈都要依次經(jīng)過個直道與彎道的交接口.已知某男子速滑運動員順利通過每個交接口的概率均為,摔倒的概率均為.假定運動員只有在摔倒或到達終點時才停止滑行,現(xiàn)在用表示該運動員滑行最后一圈時在這一圈內(nèi)已經(jīng)順利通過的交接口數(shù).

(1)求該運動員停止滑行時恰好已順利通過個交接口的概率;

(2)求的分布列及數(shù)學(xué)期望.

【答案】(1);(2)見解析.

【解析】分析:(1)該運動員停止滑行時恰好已順利通過個交接口的情況只有一種,前三個交接口順利通過,通過第四個交接口時摔倒,其概率為;(2)分析 的可能取值,并計算相應(yīng)的概率,列出分布列,計算數(shù)學(xué)期望.

詳解:

(1)由題意可知:.

(2)的所有可能值為.

,且,,相互獨立.

,

.

從而的分布列為

0

1

2

3

4

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|,其中a>1
(1)當(dāng)a=2時,求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知關(guān)于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)底數(shù)),方程有四個實數(shù)根,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面.四邊形為正方形,且的中點,的中點.

(1)求證:平面;

(2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在 △ABC 中,設(shè) a,b,c 分別是角 A,B,C 的對邊,已知向量 = (a,sinC-sinB),= (b + c,sinA + sinB),且

(1) 求角 C 的大小

(2) 若 c = 3, 求 △ABC 的周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p:指數(shù)函數(shù)f(x)=(2a-6)x在R上是單調(diào)減函數(shù);q:關(guān)于x的方程x2-3ax+2a2+1=0的兩根均大于3,若pq為真,pq為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點O為坐標(biāo)原點,直線l經(jīng)過拋物線C:y2=4x的焦點F.
(Ⅰ)若點O到直線l的距離為 , 求直線l的方程;
(Ⅱ)設(shè)點A是直線l與拋物線C在第一象限的交點.點B是以點F為圓心,|FA|為半徑的圓與x軸負半軸的交點.試判斷直線AB與拋物線C的位置關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了普及環(huán)保知識,增強環(huán)保意識,某大學(xué)從理工類專業(yè)的班和文史類專業(yè)的班各抽取名同學(xué)參加環(huán)保知識測試,統(tǒng)計得到成績與專業(yè)的列聯(lián)表:( )

優(yōu)秀

非優(yōu)秀

總計

14

6

20

7

13

20

總計

21

19

40

附:參考公式及數(shù)據(jù):

(1)統(tǒng)計量:,().

(2)獨立性檢驗的臨界值表:

0.050

0.010

3.841

6.635

則下列說法正確的是

A. 的把握認為環(huán)保知識測試成績與專業(yè)有關(guān)

B. 的把握認為環(huán)保知識測試成績與專業(yè)無關(guān)

C. 的把握認為環(huán)保知識測試成績與專業(yè)有關(guān)

D. 的把握認為環(huán)保知識測試成績與專業(yè)無關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知在平面直角坐標(biāo)系,的參數(shù)方程為 (為參數(shù))以軸為極軸, 為極點建立極坐標(biāo)系,在該極坐標(biāo)系下,圓是以點為圓心,且過點的圓心.

(1)求圓及圓在平而直角坐標(biāo)系下的直角坐標(biāo)方程;

(2)求圓上任一點與圓上任一點之間距離的最小值.

查看答案和解析>>

同步練習(xí)冊答案