已知函數(shù)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)a>0,求函數(shù)f(x)在[2a,4a]上的最小值;
(3)某同學(xué)發(fā)現(xiàn):總存在正實(shí)數(shù)a、b(a<b),使ab=ba,試問:他的判斷是否正確?若不正確,請(qǐng)說明理由;若正確,請(qǐng)直接寫出a的取值范圍(不需要解答過程).
【答案】分析:(1)先確定函數(shù)的定義域,再利用導(dǎo)數(shù),可求函數(shù)f(x)的單調(diào)區(qū)間;
(2)根據(jù)f(x)在(0,e)上單調(diào)遞增,在(e,+∞)上單調(diào)遞減,結(jié)合函數(shù)的定義域,分類討論,可求函數(shù)f(x)在[2a,4a]上的最小值;
(3)a的取值范圍是1<a<e,利用f(x)在(0,e)上單調(diào)遞增,在(e,+∞)上單調(diào)遞減,即可求得.
解答:解:(1)定義域?yàn)椋?,+∞),,
,則x=e,
當(dāng)x變化時(shí),f'(x),f(x)的變化情況如下表:
x(0,e)e(e,+∞)
f'(x)+-
f(x)
∴f(x)的單調(diào)增區(qū)間為(0,e);單調(diào)減區(qū)間為(e,+∞).…(4分)
(2)由(1)知f(x)在(0,e)上單調(diào)遞增,在(e,+∞)上單調(diào)遞減,所以,
當(dāng)4a≤e時(shí),即時(shí),f(x)在[2a,4a]上單調(diào)遞增,∴f(x)min=f(2a);
當(dāng)2a≥e時(shí),f(x)在[2a,4a]上單調(diào)遞減,∴f(x)min=f(4a)
當(dāng)2a<e<4a時(shí),即時(shí),f(x)在[2a,e]上單調(diào)遞增,f(x)在[e,4a]上單調(diào)遞減,
∴f(x)min=min{f(2a),f(4a)}.
下面比較f(2a),f(4a)的大小,…(8分)
,
∴若,則f(a)-f(2a)≤0,此時(shí);
,則f(a)-f(2a)>0,此時(shí);…(10分)
綜上得:
當(dāng)0<a≤1時(shí),;
當(dāng)a>1時(shí),,…(12分)
(3)正確,a的取值范圍是1<a<e                           …(16分)
理由如下,考慮幾何意義,即斜率,當(dāng)x→+∞時(shí),f(x)→0
又∵f(x)在(0,e)上單調(diào)遞增,在(e,+∞)上單調(diào)遞減
∴f(x)的大致圖象如右圖所示
∴總存在正實(shí)數(shù)a,b且1<a<e<b,使得f(a)=f(b),即,即ab=ba
點(diǎn)評(píng):本題重點(diǎn)考查導(dǎo)數(shù)的運(yùn)用,考查函數(shù)的單調(diào)性,考查函數(shù)的最值,考查分類討論的數(shù)學(xué)思想,有一定的綜合性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象和y軸交于(0,1)且y軸右側(cè)的第一個(gè)最大值、最小值點(diǎn)分別為P(x0,2)和Q(x0+3π,-2).
(1)求函數(shù)y=f(x)的解析式及x0;
(2)求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(3)如果將y=f(x)圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的
1
3
(縱坐標(biāo)不變),然后再將所得圖象沿x軸負(fù)方向平移
π
3
個(gè)單位,最后將y=f(x)圖象上所有點(diǎn)的縱坐標(biāo)縮短到原來的
1
2
(橫坐標(biāo)不變)得到函數(shù)y=g(x)的圖象,寫出函數(shù)y=g(x)的解析式并給出y=|g(x)|的對(duì)稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(3x+φ) ( A>0,x∈(-∞,+∞),0<φ<π ) 在x=
π
12
時(shí)取得最大值4.
(1)求函數(shù)f(x)的最小正周期及解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)求函數(shù)f(x)在[0,
π
3
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù) (1)求函數(shù)在區(qū)間[1,]上的最大值、最小值;

(2)求證:在區(qū)間(1,)上,函數(shù)圖象在函數(shù)圖象的下方;

(3)設(shè)函數(shù),求證:。(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年湖北省仙桃一中高三(上)第二次段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(1)求函數(shù)f(x)的最小正周期和最小值;
(2)在給出的直角坐標(biāo)系中,用描點(diǎn)法畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省棗莊市高三上學(xué)期期末檢測(cè)理科數(shù)學(xué) 題型:解答題

(本題滿分12分)

已知函數(shù)

(1)求函數(shù)的極值點(diǎn);

(2)若直線過點(diǎn)(0,—1),并且與曲線相切,求直線的方程;

(3)設(shè)函數(shù),其中,求函數(shù)上的最小值.(其中e為自然對(duì)數(shù)的底數(shù))

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案