【題目】在△ABC中,a,b,c分別為角A,B,C的對邊,且滿足4cos2 ﹣cos2(B+C)= ,若a=2,則△ABC的面積的最大值是

【答案】
【解析】
解:∵A+B+C=π,
∴4cos2 ﹣cos2(B+C)=2(1+cosA)﹣cos2A=﹣2cos2A+2cosA+3= ,
∴2cos2A﹣2cosA+ =0.
∴cosA=
∵0<A<π,∴A= °.
∵a=2,由余弦定理可得:4=b2+c2﹣bc≥2bc﹣bc=bc,(當且僅當b=c=2,不等式等號成立).
∴bc≤4.
∴SABC= bcsinA≤ × =
所以答案是:
【考點精析】解答此題的關鍵在于理解正弦定理的定義的相關知識,掌握正弦定理:,以及對余弦定理的定義的理解,了解余弦定理:;;

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足 ,設{Sn}的前n項和為Tn , T2017=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校在一次第二課堂活動中,特意設置了過關智力游戲,游戲共五關.規(guī)定第一關沒過者沒獎勵,過n(n∈N*)關者獎勵2n1件小獎品(獎品都一樣).如圖是小明在10次過關游戲中過關數(shù)的條形圖,以此頻率估計概率.
(Ⅰ)求小明在這十次游戲中所得獎品數(shù)的均值;
(Ⅱ)規(guī)定過三關者才能玩另一個高級別的游戲,估計小明一次游戲后能玩另一個游戲的概率;
(Ⅲ)已知小明在某四次游戲中所過關數(shù)為{2,2,3,4},小聰在某四次游戲中所過關數(shù)為{3,3,4,5},現(xiàn)從中各選一次游戲,求小明和小聰所得獎品總數(shù)超過10的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】奇函數(shù)f(x)定義域為(﹣π,0)∪(0,π),其導函數(shù)是f′(x).當0<x<π時,有f′(x)sinx﹣f(x)cosx<0,則關于x的不等式f(x)< f( )sinx的解集為(
A.( ,π)
B.(﹣π,﹣ )∪( ,π)
C.(﹣ ,0)∪(0,
D.(﹣ ,0)∪( ,π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高速公路為人民出行帶來極大便利,但由于高速上車速快,一旦出事故往往導致生命或財產的重大損失,我國高速公路最高限速120km/h,最低限速60km/h.
(1)當駕駛員以120 千米/小時速度駕車行駛,駕駛員發(fā)現(xiàn)前方有事故,以原車速行駛大約需要0.9秒后才能做出緊急剎車,做出緊急剎車后,車速依v(t)= t(t:秒,v(t):米/秒)規(guī)律變化直到完全停止,求駕駛員從發(fā)現(xiàn)前方事故到車輛完全停止時,車輛行駛的距離;(取ln5=1.6)
(2)國慶期間,高速免小車通行費,某人從襄陽到曾都自駕游,只需承擔油費.已知每小時油費v(元)與車速有關,w= +40(v:km/h),高速路段必須按國家規(guī)定限速內行駛,假定高速上為勻速行駛,高速上共行駛了S千米,當高速上行駛的這S千米油費最少時,求速度v應為多少km/h?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣ax+2lnx(其中a是實數(shù)).
(1)求f(x)的單調區(qū)間;
(2)若設2(e+ )<a< ,且f(x)有兩個極值點x1 , x2(x1<x2),求f(x1)﹣f(x2)取值范圍.(其中e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年巴西奧運會的周邊商品有80%左右為“中國制造”,所有的廠家都是經過層層篩選才能獲此殊榮.甲、乙兩廠生產同一產品,為了解甲、乙兩廠的產品質量,以確定這一產品最終的供貨商,采用分層抽樣的方法從甲、乙兩廠生產的產品共98件中分別抽取9件和5件,測量產品中的微量元素的含量(單位:毫克).下表是從乙廠抽取的5件產品的測量數(shù)據(jù):

編號

1

2

3

4

5

x

169

178

166

175

180

y

75

80

77

70

81


(1)求乙廠生產的產品數(shù)量:
(2)當產品中的微量元素x、y滿足:x≥175,且y≥75時,該產品為優(yōu)等品.用上述樣本數(shù)據(jù)估計乙廠生產的優(yōu)等品的數(shù)量:
(3)從乙廠抽出的上述5件產品中,隨機抽取2件,求抽取的2件產品中優(yōu)等品數(shù)的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=|3x﹣1|+x+2,
(1)解不等式f(x)≤3,
(2)若不等式f(x)>a的解集為R,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a是常數(shù),對任意實數(shù)x,不等式|x+1|﹣|2﹣x|≤a≤|x+1|+|2﹣x|都成立.
(Ⅰ)求a的值;
(Ⅱ)設m>n>0,求證:2m+ ≥2n+a.

查看答案和解析>>

同步練習冊答案