【題目】若關(guān)于x的不等式e2x﹣alnxa恒成立,則實(shí)數(shù)a的取值范圍是( )
A.[0,2e]B.(﹣∞,2e]C.[0,2e2]D.(﹣∞,2e2]
【答案】C
【解析】
討論a<0時(shí),f(x)=e2x﹣alnx無(wú)最小值,不符題意;檢驗(yàn)a=0時(shí)顯然成立;討論a>0時(shí),求得f(x)的導(dǎo)數(shù)和極值點(diǎn)m、極值和最值,解不等式求得m的范圍,結(jié)合a=2me2m,可得所求范圍.
解:當(dāng)a<0時(shí),f(x)=e2x﹣alnx為(0,+∞)的增函數(shù)(增函數(shù)+增函數(shù)=增函數(shù)),此時(shí)時(shí),f(x),所以不符合題意;
當(dāng)a=0時(shí),e2x﹣alnxa即為e2x≥0顯然成立;
當(dāng)a>0時(shí),f(x)=e2x﹣alnx的導(dǎo)數(shù)為=2e2x,
由于y=2e2x在(0,+∞)遞增(增函數(shù)+增函數(shù)=增函數(shù)),
設(shè)=0的根為m,即有a=2me2m,.
當(dāng)0<x<m時(shí),<0,f(x)單調(diào)遞減;當(dāng)x>m時(shí),>0,f(x)單調(diào)遞增,
可得x=m處f(x)取得極小值,且為最小值e2m﹣alnm,
由題意可得e2m﹣alnma,即alnma,
化為m+2mlnm≤1,設(shè)g(m)=m+2mlnm,=1+2(1+lnm),
所以函數(shù)在內(nèi)單調(diào)遞減,在單調(diào)遞增.
當(dāng)m=1時(shí),g(1)=1,當(dāng)時(shí),.
可得m+2mlnm≤1的解為0<m≤1,
設(shè)
所以函數(shù)在單調(diào)遞增.
則a=2me2m∈(0,2e2],
綜上可得a∈[0,2e2],
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,,,點(diǎn)是線段的中點(diǎn).
(1)證明:平面;
(2)若,,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】人們通常以分貝(符號(hào)是)為單位來(lái)表示聲音強(qiáng)度的等級(jí),30~40分貝是較理想的安靜環(huán)境,超過(guò)50分貝就會(huì)影響睡眠和休息,70分貝以上會(huì)干擾談話,長(zhǎng)期生活在90分貝以上的嗓聲環(huán)境,會(huì)嚴(yán)重影響聽(tīng)力和引起神經(jīng)衰弱、頭疼、血壓升高等疾病,如果突然暴露在高達(dá)150分貝的噪聲環(huán)境中,聽(tīng)覺(jué)器官會(huì)發(fā)生急劇外傷,引起鼓膜破裂出血,雙耳完全失去聽(tīng)力,為了保護(hù)聽(tīng)力,應(yīng)控制噪聲不超過(guò)90分貝,一般地,如果強(qiáng)度為的聲音對(duì)應(yīng)的等級(jí)為,則有,則的聲音與的聲音強(qiáng)度之比為( )
A.10B.100C.1000D.10000
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)是定義域?yàn)?/span>的奇函數(shù),且它的最小正周期是T,已知,.給出下列四個(gè)判斷:①對(duì)于給定的正整數(shù),存在,使得成立;②當(dāng)a時(shí),對(duì)于給定的正整數(shù),存在,使得成立;③當(dāng)時(shí),函數(shù)既有對(duì)稱軸又有對(duì)稱中心;④當(dāng)時(shí),的值只有0或.其中正確判斷的有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列:A:a1,a2,…,an,B:b1,b2,…,bn.已知ai,bj∈{0,1}(i=1,2,…,n;j=1,2,…,n),定義n×n數(shù)表,其中xij.
(1)若A:1,1,1,0,B:0,1,0,0,寫(xiě)出X(A,B);
(2)若A,B是不同的數(shù)列,求證:n×n數(shù)表X(A,B)滿足“xij=xji(i=1,2,…,n;j=1,2,…,n;ij)”的充分必要條件為“ak+bk=1(k=1,2,…,n)”;
(3)若數(shù)列A與B中的1共有n個(gè),求證:n×n數(shù)表X(A,B)中1的個(gè)數(shù)不大于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣sinx+ax(a>0).
(1)若a=1,求證:當(dāng)x∈(1,)時(shí),f(x)<2x﹣1;
(2)若f(x)在(0,2π)上有且僅有1個(gè)極值點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的左、右焦點(diǎn)分別為,實(shí)軸長(zhǎng)為4,漸近線方程為,點(diǎn)N在圓上,則的最小值為( )
A. B. 5C. 6D. 7
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正三角形的邊長(zhǎng)為2, 分別在三邊和上, 為的中點(diǎn), .
(Ⅰ)當(dāng)時(shí),求的大。
(Ⅱ)求的面積的最小值及使得取最小值時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱錐中,,△為等邊三角形,二面角的余弦值為,當(dāng)三棱錐的體積最大時(shí),其外接球的表面積為.則三棱錐體積的最大值為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com