(12分)⊙O的割線PAB交⊙O于A、B兩點,割線PCD經過圓心。
已知PA=6,AB=,PO=12.求⊙O的半徑。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

[選修4 - 1:幾何證明選講](本小題滿分10分)
如圖,在梯形中,∥BC,點分別在邊,上,設相交于點,若,四點共圓,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(10分)如圖,A,B,C,D四點在同一圓上,AD的延長線與BC的延長線交于E點,且EC=ED。

(1)證明:CD//AB;(2)延長CD到F,延長DC到G,使得EF=EG,證明:A,B,G,F(xiàn)四點共圓。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

請考生在(22)、(23)、(24)三題中任選一題作答,如果多答,則按做的第一題記分.作答時用2B鉛筆在答題卡上把所選題目對應題號右側的方框涂黑.
(22)(本小題滿分10分)選修4—1:幾何證明選講。如圖,⊙O是△的外接圓,D
是的中點,BDACE
(Ⅰ)求證:CD=DE·DB
(Ⅱ)若,OAC的距離為1,求⊙O的半徑

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是⊙的直徑,、是⊙上的點,的角平分線,過點點作,交的延長線于點,,垂足為點,

⑴求證:是⊙的切線    
⑵求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)
如圖甲,在平面四邊形ABCD中,已知,,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD平面BDC(如圖乙),設點E、F分別為棱AC、AD的中點.

(1)求證:DC平面ABC;
(2)求BF與平面ABC所成角的正弦;
(3)求二面角B-EF-A的余弦

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(滿分9分)如圖,已知梯形中,,。求梯形的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

若圓的方程為為參數(shù)),直線的方程為(t為參數(shù)),則直線與圓的位置關系是(     )。

A.相交過圓心 B.相交而不過圓心 C.相切 D.相離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)
如圖,在⊙O中,弦CD垂直于直徑AB,求證:

查看答案和解析>>

同步練習冊答案