分析 根據(jù)極坐標(biāo)方程,參數(shù)方程與普通方程的關(guān)系求出曲線的普通方程,利用點到hi直線的距離公式進(jìn)行求解即可.
解答 解:由$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=m得$\sqrt{2}$ρsinθcos$\frac{π}{4}$-$\sqrt{2}$ρcosθsin$\frac{π}{4}$=m,
即x-y+m=0,
即直線l的直角坐標(biāo)方程為x-y+m=0,
圓C的普通方程為(x-1)2+(y+2)2=9,
圓心C到直線l的距離$\frac{|1-(-2)+m|}{{\sqrt{2}}}=\sqrt{2}$,
解得m=-1或m=-5.
點評 本題主要考查參數(shù)方程,極坐標(biāo)方程與普通方程的關(guān)系,結(jié)合點到直線的距離公式解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c<b<a | B. | c<a<b | C. | a<c<b | D. | a<b<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com