5.設(shè)函數(shù)f(x)在R上存在導(dǎo)函數(shù)f′(x),對(duì)于任意的實(shí)數(shù)x,都有f(x)=4x2-f(-x),當(dāng)x∈(-∞,0)時(shí),f′(x)<4x,若f(m+1)≤f(-m)+4m+2,則實(shí)數(shù)m的取值范圍是( 。
A.[-$\frac{1}{2}$,+∞)B.[-$\frac{3}{2}$,+∞)C.[-1,+∞)D.[-2,+∞)

分析 利用構(gòu)造法設(shè)g(x)=f(x)-2x2,推出g(x)為奇函數(shù),判斷g(x)的單調(diào)性,然后推出不等式得到結(jié)果.

解答 解:∵f(x)=4x2-f(-x),
∴f(x)-2x2+f(-x)-2x2=0,
設(shè)g(x)=f(x)-2x2,則g(x)+g(-x)=0,
∴函數(shù)g(x)為奇函數(shù).
∵x∈(-∞,0)時(shí),f′(x)<4x,
g′(x)=f′(x)-4x<0,
故函數(shù)g(x)在(-∞,0)上是減函數(shù),
故函數(shù)g(x)在(0,+∞)上也是減函數(shù),
若f(m+1)≤f(-m)+4m+2,
則f(m+1)-2(m+1)2≤f(-m)-2m2,
即g(m+1)≤g(-m),
∴m+1≥-m,解得:m≥-$\frac{1}{2}$,
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)奇偶性、單調(diào)性、導(dǎo)數(shù)的綜合應(yīng)用,考查分析問(wèn)題解決問(wèn)題的能力,難度比較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在底面為正三角形的直棱柱(側(cè)棱垂直于底面的棱柱)ABC-A1B1C1中,AB=2,AA1=3,點(diǎn)D為棱BD的中點(diǎn),點(diǎn)E為A,C上的點(diǎn),且滿足A1E=mEC(m∈R),當(dāng)二面角E-AD-C的余弦值為$\frac{\sqrt{10}}{10}$時(shí),實(shí)數(shù)m的值為( 。
A.1B.2C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若點(diǎn)P對(duì)應(yīng)的復(fù)數(shù)z滿足|z|≤1,則P的軌跡是(  )
A.直線B.線段C.D.單位圓以及圓內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知$\overrightarrow a$=(2,1),$\overrightarrow b$=(m,-1),若$\overrightarrow a∥\overrightarrow b$,則m=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下表是降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)應(yīng)數(shù)據(jù),根據(jù)表中提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程為y=0.7x+0.35,則表中m的值為( 。
x3.54.55.56.5
y34m45
A.1B.0.85C.0.95D.0.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若關(guān)于x的不等式|ax-2|<3的解集為{x|-$\frac{5}{3}$<x<$\frac{1}{3}$},則a=(  )
A.-2B.2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)坐標(biāo)為(2,0),短軸長(zhǎng)為4$\sqrt{3}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程及離心率;
(2)設(shè)P是橢圓C上一點(diǎn),且點(diǎn)P與橢圓C的兩個(gè)焦點(diǎn)F1、F2構(gòu)成一個(gè)以∠PF2F1為直角的直角三角形,求$\frac{|P{F}_{1}|}{|P{F}_{2}|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,四棱錐P-ABCD中,BC∥AD,BC=1,AD=3,AC⊥CD,且平面PCD⊥平面ABCD.
(1)求證:AC⊥PD;
(2)在線段PA上是否存在點(diǎn)E,使BE∥平面PCD?若存在,確定點(diǎn)E的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知f(x)=|x-a|是(1,+∞)上的單調(diào)遞增函數(shù),則實(shí)數(shù)a的取值范圍是(-∞,1].

查看答案和解析>>

同步練習(xí)冊(cè)答案