【題目】2019年底,武漢發(fā)生新型冠狀病毒肺炎疫情,國家衛(wèi)健委緊急部署,從多省調(diào)派醫(yī)務(wù)工作者前去支援,正值農(nóng)歷春節(jié)舉家團圓之際,他們成為最美逆行者.武漢市從27日起舉全市之力入戶上門排查確診的新冠肺炎患者疑似的新冠肺炎患者無法明確排除新冠肺炎的發(fā)熱患者和確診患者的密切接觸者等四類人員,強化網(wǎng)格化管理,不落一戶不漏一人.若在排查期間,某小區(qū)有5人被確認(rèn)為確診患者的密切接觸者,現(xiàn)醫(yī)護人員要對這5人隨機進行逐一核糖核酸檢測,只要出現(xiàn)一例陽性,則將該小區(qū)確定為感染高危小區(qū).假設(shè)每人被確診的概率均為且相互獨立,若當(dāng)時,至少檢測了4人該小區(qū)被確定為感染高危小區(qū)的概率取得最大值,則____

【答案】

【解析】

根據(jù)題意求出檢測前3人沒有確診第4人確診或者前4人沒有確診第5人確診的概率,利用導(dǎo)數(shù)法,求出所求概率的最大值.

由題意知,至少檢測了4人該小區(qū)被確定為感染高危小區(qū)的概率

,

,解得,故上單調(diào)遞增,

上單調(diào)遞減,故當(dāng)時,取得最大值.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線y24x焦點F的直線l交拋物線于A、B兩點(點A在第一象限),若3,則直線l的斜率為(

A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.

(1)求橢圓的方程;

(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年初,一場新冠肺炎疫情突如其來,在黨中央強有力的領(lǐng)導(dǎo)下,全國各地的醫(yī)務(wù)工作者迅速馳援湖北,以大無畏的精神沖在了抗擊疫情的第一線,迅速控制住疫情.但國外疫情嚴(yán)峻,輸入性病例逐漸增多,為了鞏固我國的抗疫成果,保護國家和人民群眾的生命安全,我國三家生物高科技公司各自組成AB、C三個科研團隊進行加急疫苗研究,其研究方向分別是滅活疫苗、核酸疫苗和全病毒疫苗,根據(jù)這三家的科技實力和組成的團隊成員,專家預(yù)測這AB、C三個團隊未來六個月中研究出合格疫苗并用于臨床接種的概率分別為,,且三個團隊是否研究出合格疫苗相互獨立.

1)求六個月后A,B兩個團隊恰有一個研究出合格疫苗并用于臨床接種的概率;

2)設(shè)六個月后研究出合格疫苗并用于臨床接種的團隊個數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為4.且過點

1)求橢圓E的方程;

2)設(shè),,,過B點且斜率為的直線l交橢圓E于另一點M,交x軸于點Q,直線AM與直線相交于點P.證明:O為坐標(biāo)原點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l和橢圓相交于點,

1)當(dāng)直線l過橢圓的左焦點和上頂點時,求直線l的方程

2)點上,若,求面積的最大值:

3)如果原點O到直線l的距離是,證明:為直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱錐中,,,,點中點.

1)求證:平面平面

2)若點中點,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的左、右焦點分別為、,軸的正半軸上一點,交橢圓于,且,的內(nèi)切圓半徑為1.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若直線和圓相切,且與橢圓交于、兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險公司為客戶定制了5個險種:甲,一年期短險;乙,兩全保險;丙,理財類保險;丁,定期壽險:戊,重大疾病保險,各種保險按相關(guān)約定進行參保與理賠.該保險公司對5個險種參?蛻暨M行抽樣調(diào)查,得出如下的統(tǒng)計圖例,以下四個選項錯誤的是(

A.54周歲以上參保人數(shù)最少B.1829周歲人群參保總費用最少

C.丁險種更受參保人青睞D.30周歲以上的人群約占參保人群的80%

查看答案和解析>>

同步練習(xí)冊答案