設函數(shù)f(x)=sin2(x+)-cos2(x+)(x∈R),則函數(shù)f(x)是( )
A.最小正周期為π的奇函數(shù)
B.最小正周期為π的偶函數(shù)
C.最小正周期為的奇函數(shù)
D.最小正周期為的偶函數(shù)
【答案】分析:利用倍角公式及誘導公式,化簡函數(shù)的解析式,進而求出其周期,并判斷其奇偶性,可得答案.
解答:解:∵函數(shù)f(x)=sin2(x+)-cos2(x+)=-cos2(x+)=-cos(2x+)=sin2x
∵ω=2,∴函數(shù)f(x)的最小正周期T=π
又∵f(-x)=sin(-2x)=-sin2x=-f(x)
故f(x)為奇函數(shù)
故函數(shù)f(x)是最小正周期為π的奇函數(shù)
故選A
點評:本題考查的知識點是三角函數(shù)中的恒等變換,三角函數(shù)的周期性,三角函數(shù)的奇偶性,其中利用倍角公式及誘導公式,化簡函數(shù)的解析式,是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•湖北)設函數(shù)f(x)=sin2ωx+2
3
sinωx•cosωx-cos2ωx+λ(x∈R)的圖象關于直線x=π對稱,其中ω,λ為常數(shù),且ω∈(
1
2
,1).
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點(
π
4
,0)
,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•許昌一模)設函數(shù)f(x)=sin2(x+
π
4
)-cos2(x+
π
4
)(x∈R),則函數(shù)f(x)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2012年湖北省高考數(shù)學試卷(文科)(解析版) 題型:解答題

設函數(shù)f(x)=sin2ωx+2sinωx•cosωx-cos2ωx+λ(x∈R)的圖象關于直線x=π對稱,其中ω,λ為常數(shù),且ω∈(,1).
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年山東省高考數(shù)學試卷(文科)(解析版) 題型:解答題

設函數(shù)f(x)=-sin2ωx-sinωxcosωx(ω>0),且y=f(x)的圖象的一個對稱中心到最近的對稱軸的距離為,
(Ⅰ)求ω的值
(Ⅱ)求f(x)在區(qū)間[]上的最大值和最小值.

查看答案和解析>>

同步練習冊答案