13.函數(shù)$f(x)=\frac{1}{{{3^{x-1}}}}-3$是( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)也是偶函數(shù)D.既不是奇函數(shù)也不是偶函數(shù)

分析 根據(jù)題意,先求出函數(shù)f(x)的定義域,分析可得其定義域關(guān)于原點(diǎn)對稱,再求出f(-x),分析f(-x)與f(x)的關(guān)系,即可得答案.

解答 解:根據(jù)題意,對于函數(shù)$f(x)=\frac{1}{{{3^{x-1}}}}-3$,其定義域?yàn)镽,
f(-x)=$\frac{1}{{3}^{-x-1}}$-3=3x+1-3,
而$f(x)=\frac{1}{{{3^{x-1}}}}-3$=$\frac{3}{{3}^{x}}$-3,
有f(x)≠f(-x)且f(x)≠-f(-x),
故函數(shù)f(x)既不是奇函數(shù)也不是偶函數(shù);
故選:D.

點(diǎn)評 本題考查函數(shù)奇偶性的判定,注意判斷函數(shù)奇偶性時,要先分析函數(shù)的定義域.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.有10張卡片,其中8張標(biāo)有數(shù)字3,2張標(biāo)有數(shù)字5,從中任意抽出3張卡片,設(shè)3張卡片上的數(shù)字之和為X,求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知單位向量$\overrightarrow a$與$\overrightarrow b$的夾角為120°,則$|{\overrightarrow a-3\overrightarrow b}|$=( 。
A.$\sqrt{3}$B.$2\sqrt{3}$C.$\sqrt{13}$D.$\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^3}\\-{x^3}\end{array}\right.\begin{array}{l}x≥0,\\ x<0,\end{array}$,若f(3a-1)≥8f(a),則實(shí)數(shù)a的取值范圍為$({-∞,\frac{1}{5}}]∪[{1,+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的短軸長等于焦距,則橢圓的離心率為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.定義在R上的函數(shù)f(x),如果存在函數(shù)g(x)=ax+b,(a,b為常數(shù)),使得f(x)≥g(x)
對一切實(shí)數(shù)x都成立,則稱g(x)為函數(shù)f(x)的一個承托函數(shù).給出如下命題:
①函數(shù)g(x)=-2是函數(shù)$f(x)=\left\{\begin{array}{l}lnx,x>0\\ 1,x≤0\end{array}\right.$的一個承托函數(shù);
②函數(shù)g(x)=x-1是函數(shù)f(x)=x+sinx的一個承托函數(shù);
③若函數(shù)g(x)=ax是函數(shù)f(x)=ex的一個承托函數(shù),則a的取值范圍是[0,e];
④值域是R的函數(shù)f(x)不存在承托函數(shù).
其中正確的命題的個數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)解不等式|x+1|+|x+3|<4;
(2)若a,b滿足(1)中不等式,求證:2|a-b|<|ab+2a+2b|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點(diǎn)和上頂點(diǎn)分別為A,B,左焦點(diǎn)為F,以原點(diǎn)O為圓心的圓與直線BF相切,且該圓與y軸的正半軸交于點(diǎn)C,過點(diǎn)C的直線交橢圓于M,N兩點(diǎn),若四邊形FAMN是平行四邊形,則該橢圓的離心率為( 。
A.$\frac{3}{5}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)$f(x)=\frac{x^3}{cosx}$的定義域?yàn)?({-\frac{π}{2},\frac{π}{2}})$,當(dāng)$|{x_i}|<\frac{π}{2}$(i=1,2,3)時,若x1+x2>0,x2+x3>0,x1+x3>0,則有f(x1)+f(x2)+f(x3)的值( 。
A.恒小于零B.恒等于零
C.恒大于零D.可能大于零,也可能小于零

查看答案和解析>>

同步練習(xí)冊答案