設(shè)M=3x2-x+1,N=2x2+x,則


  1. A.
    M>N
  2. B.
    M<N
  3. C.
    M≤N
  4. D.
    M≥N
D
要比較兩數(shù)的大小,常用作差比較法.由于M-N=(3x2-x+1)-(2x2+x)=x2-2x+1=(x-1)2≥0,所以M≥N.故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:學(xué)習(xí)高手必修五數(shù)學(xué)蘇教版 蘇教版 題型:013

設(shè)M=3x2-x+1,N=2x2+x,則

[  ]
A.

M>N

B.

M<N

C.

M≤N

D.

M≥N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnxx2. (1)若函數(shù)g(x)=f(x)-ax在定義域內(nèi)為增函數(shù),求實數(shù)a的取值范圍; (2)在(1)的條件下,若a>1,h(x)=e3x-3aex,x∈[0,ln2],求h(x)的極小值; (3)設(shè)F(x)=2f(x)-3x2kx(k∈R),若函數(shù)F(x)存在兩個零點m,n(0<m<n),且滿足2x0mn,問:函數(shù)F(x)在(x0,F(x0))處的切線能否平行于x軸?若能,求出該切線方程,若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnxx2. (1)若函數(shù)g(x)=f(x)-ax在定義域內(nèi)為增函數(shù),求實數(shù)a的取值范圍; (2)在(1)的條件下,若a>1,h(x)=e3x-3aex,x∈[0,ln2],求h(x)的極小值; (3)設(shè)F(x)=2f(x)-3x2kx(k∈R),若函數(shù)F(x)存在兩個零點m,n(0<m<n),且滿足2x0mn,問:函數(shù)F(x)在(x0,F(x0))處的切線能否平行于x軸?若能,求出該切線方程,若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三8月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設(shè)切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設(shè)切點為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過點A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫出草圖知,當(dāng)-6<m<2時,m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

同步練習(xí)冊答案