a
=(
3
cosωx,sinωx),
b
=(sinωx,0)
,其中ω>0,函數(shù)f(x)=(
a
+
b
)•
b
+k

(1)若f(x)圖象申相鄰兩條對(duì)稱(chēng)軸間的距離不小于
π
2
,求ω的取值范圍.
(2)若f(x)的最小正周期為π,且當(dāng)x∈[-
π
6
,
π
6
]
時(shí),f(x)的最大值是
1
2
,求f(x)的解析式.
分析:(1)由題設(shè)條件先推導(dǎo)出f(x)=sin(2ωx-
π
6
)+k+
1
2
.再由f(x)圖象中相鄰兩條對(duì)稱(chēng)軸間的距離不小于
π
2
,知
T
2
=
π
π
2
,利用ω>0,能求出ω的取值范圍.
(2)由f(x)的最小正周期為π,能導(dǎo)出ω=1,故f(x)=sin(2x-
π
6
)+k+
1
2
,由當(dāng)x∈[-
π
6
,
π
6
]
時(shí),f(x)的最大值是
1
2
,能求出k,進(jìn)而能求出f(x).
解答:解:(1)∵
a
=(
3
cosωx,sinωx),
b
=(sinωx,0)

a
+
b
=(
3
cosωx+sinωx
,sinωx),
f(x)=(
a
+
b
)•
b
+k

=
3
sinωxcosωx+sin2ωx
+k
=
3
2
sin2ωx+
1-cos2ωx
2
+k

=
3
2
sin2ωx-
1
2
cos2ωx+
1
2
+k

=sin(2ωx-
π
6
)+k+
1
2

∵f(x)圖象中相鄰兩條對(duì)稱(chēng)軸間的距離不小于
π
2
,
T
2
=
π
π
2
,∴ω≤1,
∵ω>0,∴0<ω≤1.
(2)∵T=
,∴ω=1,
∴f(x)=sin(2x-
π
6
)+k+
1
2
,
∵x∈[-
π
6
,
π
6
],
∴2x-
π
6
∈[-
π
2
π
6
],
從而當(dāng)2x-
π
6
=
π
6
,即x=
π
6
時(shí),
f(x)max=f(
π
6
)
=sin
π
6
+k+
1
2
=k+1=
1
2

∴k=-
1
2
,
故f(x)=sin(2x-
π
6
).
點(diǎn)評(píng):本題考查三角函數(shù)的恒等變換的應(yīng)用,考查三角函數(shù)解析式的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
=(
3
cosωx,sinωx)
,
b
=(sinωx,0)
,其中ω∈(-
1
2
,
5
2
)
,函數(shù)f(x)=(
a
+
b
)•
b
-
1
2
,且f(x)的圖象關(guān)于直線(xiàn)x=
π
3
對(duì)稱(chēng).
(1)求f(x)的解析式及f(x)的單調(diào)區(qū)間;
(2)將y=f(x)的圖象向左平移
π
3
個(gè)單位,再將得到的圖象的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍(縱坐標(biāo)不變)后得到的y=g(x)的圖象;若函數(shù)y=g(x),x∈(
π
2
,3π)
的圖象與y=a的圖象有三個(gè)交點(diǎn)且交點(diǎn)的橫坐標(biāo)成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
=(
3
cosωx,sinωx)
,
b
=(sinωx,0),其中ω>0,記函數(shù)f(x)=(
a
+
b
)•
b
+k.
(1)若f(x)圖象中相鄰兩條對(duì)稱(chēng)軸間的距離不小于
π
2
,求ω的取值范圍.
(2)若f(x)的最小正周期為π,且當(dāng)x∈[-
π
6
π
6
]
時(shí),f(x)的最大值是
1
2
,求f(x)的解析式,并說(shuō)明如何由y=sinx的圖象變換得到y(tǒng)=f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
=(
3
cosωx,sinωx),
b
=(sinωx,0)
,其中ω>0,記函數(shù)f(x)=(
a
+
b
)•
b
-
1
2

(1)若f(x)的圖象中兩條相鄰對(duì)稱(chēng)軸間的距離
π
2
,求ω及f(x)的單調(diào)減區(qū)間.
(2)在(1)的條件下,且x∈[-
π
6
π
6
]
,求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
=(
3
cosωx,sinωx)
,
b
=(sinωx,sinωx),其中ω>0,記函數(shù)f(x)=2
a
b
,f(x)圖象中相鄰兩條對(duì)稱(chēng)軸間的距離為
π
2

(1)求ω的值;
(2)求f(x)的單調(diào)減區(qū)間和f(x)的最大值及取得最大值時(shí)x的取值集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案