精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,過橢圓C的右焦點且垂直于x軸的直線與橢圓交于A,B兩點,且|AB|=
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過點(1,0)的直線l交橢圓C于E,F兩點,若存在點G(﹣1,y0)使△EFG為等邊三角形,求直線l的方程.

【答案】解:(Ⅰ)由橢圓的離心率e= = ,①由橢圓的通徑丨AB丨= = ,② 由a2=b2+c2 , ③
解得:a=2 ,b= ,
∴橢圓的標準方程: ;
(Ⅱ)設直線l:x=ty+1,E(x1 , y1),F(x2 , y2),
易知:t=0時,不滿足,故t≠0,
,整理得:(t2+4)y2+2ty﹣7=0,
顯然△=4t2+28(t2+4)>0,
∴y1+y2=﹣ ,y1y2=﹣ ,
于是x1+x2=t(y1+y2)+2= ,
故EF的中點D( ,﹣ ),
由△EFG為等邊三角形,則丨GE丨=丨GF丨,
連接GD,則kGDkEF=﹣1,
=﹣1,整理得y0=t+ ,
則G(﹣1,t+ ),
由△EFG為等比三角形,則丨GD丨= 丨EF丨,丨GD丨2= 丨EF丨2 ,
∴( +1)2+(t+ 2= (1+t2)[(﹣ )2﹣4×(﹣ )],
整理得:( +1)2= ,
即( 2= ,解得:t2=10,則t=± ,
∴直線l的方程x=± y+1,即y=± (x﹣1).
直線l的方程y=± (x﹣1).

【解析】(Ⅰ)利用橢圓的離心率,橢圓的通徑公式,及a2=b2+c2及可求得a和b的值,求得橢圓方程;(Ⅱ)設直線l的方程,代入橢圓方程,根據韋達定理及中點坐標公式求得D點坐標,根據等邊三角形的性質,求得G點坐標,由丨GD丨= 丨EF丨,即可取得t的值,即可求得直線l的方程.
【考點精析】認真審題,首先需要了解橢圓的標準方程(橢圓標準方程焦點在x軸:,焦點在y軸:).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某工廠生產甲、乙兩種產品.已知生產一噸甲產品、一噸乙產品所需要的煤、電以及產值如表所示;又知道國家每天分配給該廠的煤和電力有限制,每天供煤至多56噸,供電至多45千瓦.問該廠如何安排生產,才能使該廠日產值最大?最大的產值是多少?

用煤(噸)

用電(千瓦)

產值(萬元)

生產一噸

甲種產品

7

2

8

生產一噸

乙種產品

3

5

11

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點F為拋物線E:x2=4y的焦點,直線l為準線,C為拋物線上的一點(C在第一象限),以點C為圓心,|CF|為半徑的圓與y軸交于D,F兩點,且△CDF為正三角形.
(Ⅰ)求圓C的方程;
(Ⅱ)設P為l上任意一點,過P作拋物線x2=4y的切線,切點為A,B,判斷直線AB與圓C的位置關系.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數有如下性質:如果常數,那么該函數在上是減函數,在上是增函數.

,函數在上的最小值為4,求a的值;

對于中的函數在區(qū)間A上的值域是,求區(qū)間長度最大的注:區(qū)間長度區(qū)間的右端點區(qū)間的左斷點

中函數的定義域是解不等式

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC中A,B,C所對的邊分別為a,b,c, (1﹣cos2B)=8sinBsinC,A+ =π.
(Ⅰ)求cosB的值;
(Ⅱ)若點D在線段BC上,且BD=6,c=5,求△ADC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數

(1)當 恒成立,求實數的取值范圍.

(2)設上有兩個極值點.

(A)求實數的取值范圍;

(B)求證: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數y=3tan.

(1)求函數的最小正周期;

(2)求函數的定義域;

(3)說明此函數的圖象是由y=tan x的圖象經過怎樣的變換得到的?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為,其準線與軸交于點,作斜率為的直線與拋物線交于兩點,的中點為的垂直平分線與軸交于

(1)的取值范圍;

(2)求證: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從甲、乙兩名學生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進行測試.現這兩名學生在相同條件下各射箭10次,命中的環(huán)數如下:

8

9

7

9

7

6

10

10

8

6

10

9

8

6

8

7

9

7

8

8

(1)計算甲、乙兩人射箭命中環(huán)數的平均數和標準差;

(2)比較兩個人的成績,然后決定選擇哪名學生參加射箭比賽.

查看答案和解析>>

同步練習冊答案