已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為5,雙曲線的左頂點(diǎn)為,若雙曲線的一條漸近線與直線平行,則實(shí)數(shù)的值是(   )
A.B.C.D.
A

試題分析:根據(jù)題意,拋物線上一點(diǎn)到其焦點(diǎn)的距離為5,則點(diǎn)M到拋物線的準(zhǔn)線x=-的距離也為5,即|1+|=5,解可得p=8;即拋物線的方程為y2=16x,易得m2=2×8=16,則m=4,即M的坐標(biāo)為(1,4)。雙曲線的左頂點(diǎn)為A,則a>0,且A的坐標(biāo)為(-,0),其漸近線方程為y=±;而KAM=,又由若雙曲線的一條漸近線與直線AM平行,則有=,解可得a=。故選A.
點(diǎn)評:本題主要考查雙曲線與拋物線性質(zhì)的綜合應(yīng)用,難度一般。我們要熟練掌握拋物線的定義和雙曲線的漸近線方程。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

曲線C上任一點(diǎn)到定點(diǎn)(0,)的距離等于它到定直線的距離.
(1)求曲線C的方程;
(2)經(jīng)過P(1,2)作兩條不與坐標(biāo)軸垂直的直線分別交曲線C于A、B兩點(diǎn),且,設(shè)M是AB中點(diǎn),問是否存在一定點(diǎn)和一定直線,使得M到這個(gè)定點(diǎn)的距離與它到定直線的距離相等.若存在,求出這個(gè)定點(diǎn)坐標(biāo)和這條定直線的方程.若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,且,過弦中點(diǎn)作準(zhǔn)線的垂線,垂足為,則的最大值為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上,拋物線上的點(diǎn)到焦點(diǎn)的距離等于5,
則m
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點(diǎn)坐標(biāo)為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)
給定拋物線,是拋物線的焦點(diǎn),過點(diǎn)的直線相交于兩點(diǎn),為坐標(biāo)原點(diǎn).
(Ⅰ)設(shè)的斜率為1,求以為直徑的圓的方程;
(Ⅱ)設(shè),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)是拋物線上的動點(diǎn),是拋物線的焦點(diǎn),若點(diǎn),則的最小值是         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點(diǎn)到準(zhǔn)線的距離為(   )
A.1B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線上的點(diǎn)M()的切線的傾斜角為(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案