函數(shù)f(x)=

[  ]

A.奇函數(shù)

B.偶函數(shù)

C.既是奇函數(shù)又是偶函數(shù)

D.既不是奇函數(shù)又不是偶函數(shù)

答案:A
解析:

  思路一(定義法):當(dāng)x>0時(shí),-x<0,則此時(shí)f(-x)=(-x)-1=-(x+1)=-f(x);當(dāng)x<0時(shí),-x>0,則此時(shí)f(-x)=(-x)+1=-(x-1)=-f(x),即對(duì)定義域內(nèi)任意x,總有f(-x)=-f(x).∴函數(shù)f(x)是奇函數(shù).

  思路二(圖像法):畫(huà)出函數(shù)f(x)的圖像,如圖所示,

  可觀察出其圖像關(guān)于原點(diǎn)對(duì)稱(chēng),∴函數(shù)f(x)是奇函數(shù).故選A.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=是定義在(-1,1)上的奇函數(shù),且f()=.

(1)確定函數(shù)f(x)的解析式;

(2)用定義證明f(x)在(-1,1)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年人教A版高中數(shù)學(xué)必修1單調(diào)性與最大(。┲稻毩(xí)卷(二)(解析版) 題型:選擇題

(2009廣西北海一檢,文10)已知函數(shù)f(x)=是(-∞,+∞)上的減函數(shù),那么a的取值范圍是(  )

A.(0,3)                          B.(0,3]

C.(0,2)                          D.(0,2]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三下學(xué)期開(kāi)學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試卷 題型:解答題

(本小題滿(mǎn)分16分)已知函數(shù)f(x)=是定義在R上的奇函數(shù),其值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052503512729687978/SYS201205250353498437943046_ST.files/image002.png">.

(1) 試求a、b的值;

(2) 函數(shù)y=g(x)(x∈R)滿(mǎn)足:

條件1: 當(dāng)x∈[0,3)時(shí),g(x)=f(x);條件2: g(x+3)=g(x)lnm(m≠1).

① 求函數(shù)g(x)在x∈[3,9)上的解析式;

② 若函數(shù)g(x)在x∈[0,+∞)上的值域是閉區(qū)間,試探求m的取值范圍,并說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年陜西省高三上學(xué)期第一次月考理科數(shù)學(xué)卷 題型:解答題

(10分)函數(shù)f(x)=是定義在(-1,1)上的奇函數(shù),且f=.

(1)確定函數(shù)f(x)的解析式;

(2)用定義證明f(x)在(-1,1)上是增函數(shù);

(3)解不等式f(t-1)+f(t)<0.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆度遼寧省沈陽(yáng)市高三數(shù)學(xué)質(zhì)量檢測(cè)試卷 題型:解答題

已知函數(shù)f(x)=是定義在(-1,1)上的奇函數(shù),且f()=.

 

(1)求函數(shù)f(x)的解析式;

(2)用定義證明f(x)在(-1,1)上是增函數(shù);

(3)解不等式f(t-1)+f(t)<0.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案