12.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{lnx,x>0}\\{{x^2}+3x-3,x≤0}\end{array}}$,則函數(shù)零點的個數(shù)為( 。
A.0B.1C.2D.3

分析 根據(jù)分段函數(shù)分段的標準分別研究函數(shù)在每一段上的零點的個數(shù),然后得到整個函數(shù)的零點個數(shù).

解答 解:當x≤0時,f(x)=x2+3x-3,令f(x)=0解得x=$\frac{-3-\sqrt{21}}{2}$或$\frac{-3+\sqrt{21}}{2}$(正值舍去)
當x>0時,f(x)=lnx,令f(x)=0解得x=1,
故函數(shù)f(x)=$\left\{{\begin{array}{l}{lnx,x>0}\\{{x^2}+3x-3,x≤0}\end{array}}$,則函數(shù)零點的個數(shù)為2.
故選:C.

點評 本題主要考查了分段函數(shù)的零點,解題常用的方法就是分段研究函數(shù)的零點,同時考查了運算求解的能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率$e=\frac{{\sqrt{6}}}{3}$,點(1,0)與橢圓短軸的兩個端點的連線互相垂直.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設橢圓C與直線y=kx+m相交于不同的兩點M,N,點D(0,-1),當|DM|=|DN|時,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,已知正四棱柱ABCD-A1B1C1D1的底面邊長是2,側棱長是16,M,N分別是棱BB1、B1C1的中點.
(1)求異面直線MN與A1C1所成角的大小(結果用反三角表示)
(2)求直線MN與平面ACC1A1所成的角(結果用反三角函數(shù)表示)].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已函數(shù)f(x)=|x+1|+|x-3|.
(1)作出函數(shù)y=f(x)的圖象;
(2)若不等式f(x)≤ax的解集非空,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=(sinx+cos)2+2$\sqrt{3}$sin2x
(1)求函數(shù)f(x)的最小正周期并求出單調遞增區(qū)間;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足2acosC+c=2b,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.設f(x)=$\sqrt{10sinx-2}-\sqrt{5cosx-3}$
(1)若銳角θ滿足tan2θ=$\frac{24}{7}$,問:θ是否為方程f(x)=1的解?為什么?
(2)求方程f(x)=1在區(qū)間(-∞,+∞)上的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.正整數(shù)按圖表的規(guī)律排列,則上起第17行,左起第11列的數(shù)應為117.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知x1,x2是方程ex-mx=0的兩解,其中x1<x2,則下列說法正確的是( 。
A.x1x2-1>0B.x1x2-1<0C.x1x2-2>0D.x1x2-2<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知向量$\overrightarrow{m}$=(cos$\frac{x}{2}$,-1),$\overrightarrow{n}$=($\sqrt{3}$sin$\frac{x}{2}$,cos2$\frac{x}{2}$),設函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+$\frac{1}{2}$.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調區(qū)間.

查看答案和解析>>

同步練習冊答案