20.已知定義在R上的函數(shù)滿足條件f(x+$\frac{3}{2$)=-f(x),且函數(shù)y=f(x-$\frac{3}{4}$)為奇函數(shù),則下面給出的命題,錯誤的是( 。
A.函數(shù)y=f(x)是周期函數(shù),且周期T=3B.函數(shù)y=f(x)在R上有可能是單調(diào)函數(shù)
C.函數(shù)y=f(x)的圖象關(guān)于點$(-\frac{3}{4},0)$對稱D.函數(shù)y=f(x)是R上的偶函數(shù)

分析 題目中條件:f(x+$\frac{3}{2}$)=-f(x)可得f(x+3)=f(x)知其周期,利用奇函數(shù)圖象的對稱性,及函數(shù)圖象的平移變換,可得函數(shù)的對稱中心,結(jié)合這些條件可探討函數(shù)的奇偶性,及單調(diào)性.

解答 解:對于A:∵f(x+3)=-f(x+$\frac{3}{2}$)=f(x)∴函數(shù)f(x)是周期函數(shù)且其周期為3,A對;
對于B:由D得:∵偶函數(shù)的圖象關(guān)于y軸對稱,∴f(x)在R上不是單調(diào)函數(shù),B不對.
對于C:∵y=f(x-$\frac{3}{4}$)是奇函數(shù)∴其圖象關(guān)于原點對稱,
又∵函數(shù)f(x)的圖象是由y=f(x-$\frac{3}{4}$)向左平移$\frac{3}{4}$個單位長度得到,
∴函數(shù)f(x)的圖象關(guān)于點(-$\frac{3}{4}$,0)對稱,故C對;
對于D:由C知,對于任意的x∈R,都有f(-$\frac{3}{4}$-x)=-f(-$\frac{3}{4}$+x),用$\frac{3}{4}$+x換x,可得:f(-$\frac{3}{2}$-x)+f(x)=0,
∴f(-$\frac{3}{2}$-x)=-f(x)=f(x+$\frac{3}{2}$)對于任意的x∈R都成立,
令t=$\frac{3}{2}$+x,則f(-t)=f(t),∴函數(shù)f(x)是偶函數(shù),D對.
故選:B.

點評 本題考查函數(shù)的奇偶性、周期性等,抽象函數(shù)是相對于給出具體解析式的函數(shù)來說的,它雖然沒有具體的表達式,但是有一定的對應法則,滿足一定的性質(zhì),這種對應法則及函數(shù)的相應的性質(zhì)是解決問題的關(guān)鍵.是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知正數(shù)a,b滿足ab≥a+b+8則a+b的最小值為( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知在三棱錐P-ABC中,AP=AB=AC=1,BC=PB=PC=$\sqrt{2}$,頂點都在一個球面上,則該球的表面積為3π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.命題“?x≥1,x2≥1”的否定是( 。
A.“?x≥1,x2<1”B.“?x<1,x2≥1”C.“?x0<1,x2≥1”D.“?x0≥1,x2<1”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.“互聯(lián)網(wǎng)+”時代,全民閱讀的內(nèi)涵已經(jīng)多元化,倡導讀書成為一種生活方式,某校為了解高中學生的閱讀情況,擬采取分層抽樣的方法從該校三個年級的學生中抽取一個容量為60的樣本進行調(diào)查,已知該校有高一學生600人,高二學生400人,高三學生200人,則應從高一學生抽取的人數(shù)為( 。
A.10B.20C.30D.40

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.三棱錐S-ABC的棱長都相等,E,F(xiàn)是棱SC上的點,若SE=$\frac{1}{3}$SC,SF=$\frac{2}{3}$SC,則AE與BF所成角的余弦值為$\frac{17}{52}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知三個函數(shù):①f(x)=x3,②f(x)=tanx,③f(x)=xsinx,其圖象能將圓O:x2+y2=1的面積等分的函數(shù)的個數(shù)是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知集合A={x|(x-1)(x-2)(x-3)=0},集合B=$\left\{{x|y=\sqrt{x-2}}\right\}$,則集合A∩B真子集的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知數(shù)列{an}滿足[2-(-1)n]an+[2+(-1)n]an+1=1+(-1)n×3n,則a25-a1=300.

查看答案和解析>>

同步練習冊答案