已知橢圓E的左右焦點(diǎn)分別F1,F(xiàn)2,過F1且斜率為2的直線交橢圓E于P、Q兩點(diǎn),若△PF1F2為直角三角形,則橢圓E的離心率為     .

試題分析:設(shè)則由于所以因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045239744862.png" style="vertical-align:middle;" />所以橢圓E的離心率為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C:的焦點(diǎn)為F,直線與y軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且.
(1)求C的方程;
(2)過F的直線與C相交于A,B兩點(diǎn),若AB的垂直平分線與C相較于M,N兩點(diǎn),且A,M,B,N四點(diǎn)在同一圓上,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)是拋物線上不同的兩點(diǎn),點(diǎn)在拋物線的準(zhǔn)線上,且焦點(diǎn)
到直線的距離為.
(I)求拋物線的方程;
(2)現(xiàn)給出以下三個(gè)論斷:①直線過焦點(diǎn);②直線過原點(diǎn);③直線平行軸.
請(qǐng)你以其中的兩個(gè)論斷作為條件,余下的一個(gè)論斷作為結(jié)論,寫出一個(gè)正確的命題,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的右焦點(diǎn)為,短軸的一個(gè)端點(diǎn)的距離等于焦距.
(1)求橢圓的方程;
(2)過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),是否存在直線,使得△與△的面積比值為?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的右焦點(diǎn),長軸的左、右端點(diǎn)分別為,且.
(1)求橢圓的方程;
(2)過焦點(diǎn)斜率為)的直線交橢圓兩點(diǎn),弦的垂直平分線與軸相交于點(diǎn). 試問橢圓上是否存在點(diǎn)使得四邊形為菱形?若存在,求的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線的一條漸近線與圓至多有一個(gè)交點(diǎn),則雙曲線離心
率的取值范圍是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)的最小距離為,離心率.
(1)求橢圓的方程;
(2)若直線、兩點(diǎn),點(diǎn),問是否存在,使?若存在求出的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出下列命題:
(1)設(shè)、為兩個(gè)定點(diǎn),為非零常數(shù),,則動(dòng)點(diǎn)的軌跡為雙曲線;
(2)若等比數(shù)列的前項(xiàng)和,則必有;
(3)若的最小值為2;
(4)雙曲線有相同的焦點(diǎn);
(5)平面內(nèi)到定點(diǎn)(3,-1)的距離等于到定直線的距離的點(diǎn)的軌跡是拋物線.
其中正確命題的序號(hào)是               .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若實(shí)數(shù)xy滿足x|x|-y|y|=1,則點(diǎn)(x,y)到直線yx的距離的取值范圍是(  )
A.[1,) B.(0,]C.D.(0,1]

查看答案和解析>>

同步練習(xí)冊(cè)答案