在正三棱錐中,分別是的中點(diǎn),有下列三個(gè)論斷:
;②//平面;③平面
其中正確論斷的個(gè)數(shù)為 (   )
A.3個(gè)     B.2個(gè)C.1個(gè)D.0個(gè)
C

試題分析:根據(jù)正三棱錐的性質(zhì)及三垂線定理知,故命題①正確;∵分別是的中點(diǎn),∴AC與面相交于點(diǎn)E,故命題②錯(cuò)誤;對(duì)于命題③,假設(shè)平面,則有,顯然錯(cuò)誤,故正確命題個(gè)數(shù)為1個(gè),選C
點(diǎn)評(píng):弄清正棱錐中線面關(guān)系及線面平行、垂直定理是解決此類問題的關(guān)鍵
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,,是三個(gè)互不重合的平面,是一條直線,下列命題中正確命題是(   )
A.若,,則B.若上有兩個(gè)點(diǎn)到的距離相等,則
C.若,,則D.若,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正三棱錐的側(cè)面與底面所成的角的余弦值為,則側(cè)棱與底面所成角的正弦值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在棱長(zhǎng)為2的正方體ABCD—A1B1C1D1中,O是底面ABCD的中心,E、F分別是CC1、AD的中點(diǎn).那么異面直線OE和FD1所成角的余弦值為(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩條不同的直線,兩個(gè)不同的平面,則下列命題中正確的是(     )
A.若
B.若
C.若
D.若

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖所示,△是正三角形,都垂直于平面,且,,的中點(diǎn).

(1)求證:∥平面;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,E, F分別是棱BC,CC1上的點(diǎn),CF="AB=2CE," AB:AD:AA1=1:2:4.

(Ⅰ)求異面直線EF與A1D所成角的余弦值;
(Ⅱ)證明AF⊥平面A1ED;
(Ⅲ)求二面角A1-ED-F的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)
已知是四邊形所在平面外一點(diǎn),四邊形的菱形,側(cè)面
為正三角形,且平面平面.
(1)若邊的中點(diǎn),求證:平面.
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,長(zhǎng)方體AC1中,AB=2,BC=AA1=1.E、F、G分別為棱DD1、D1C1、BC的中點(diǎn).

(1)求證:平面平面;
(2)在底面A1D1上有一個(gè)靠近D1的四等分點(diǎn)H,求證: EH∥平面FGB1;
(3)求四面體EFGB1的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案