【題目】已知圓過, 兩點,且圓心在直線上.
(1)求圓的方程;
(2)若直線過點且被圓截得的線段長為,求的方程.
【答案】(1);(2)或
【解析】試題分析:(1)把點P、Q的坐標和圓心坐標代入圓的一般方程,利用待定系數(shù)法求得系數(shù)的值;(2)分類討論,斜率存在和斜率不存在兩種情況.①當直線l的斜率不存在時,滿足題意,易得直線方程;②當直線l的斜率存在時,設所求直線l的斜率為k,則直線l的方程為:y-5=kx,由點到直線的距離公式求得k的值.
試題解析:
(1)設圓的方程為,圓心 ,根據題意有,計算得出,
故所求圓的方程為.
(2)如圖所示, ,設是線段的中點,
則,
∴, .
在中,可得.
當直線的斜率不存在時,滿足題意,
此時方程為.
當直線的斜率存在時,設所求直線的斜率為,則直線的方程為: ,
即,由點到直線的距離公式:
,得,此時直線的方程為.
∴所求直線的方程為或
科目:高中數(shù)學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸),一位居民的月用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據按照, ,…, 分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中的值;
(2)若將頻率視為概率,從該城市居民中隨機抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為,求的分布列與數(shù)學期望.
(3)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值(精確到0.01),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù),.
(Ⅰ)討論的極值點的個數(shù);
(Ⅱ)若對于,總有.(i)求實數(shù)的范圍; (ii)求證:對于,不等式成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設Sn是數(shù)列{an}的前n項和,且2an+Sn=An2+Bn+C.
(1)當A=B=0,C=1時,求an;
(2)若數(shù)列{an}為等差數(shù)列,且A=1,C=﹣2. ①設bn=2nan , 求數(shù)列{bn}的前n項和;
②設cn= ,若不等式cn≥ 對任意n∈N*恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某算法的程序圖如圖所示,其中輸入的變量x在1,2,3,…,30這30個整數(shù)中等可能隨機產生.
(1)分別求出按程序框圖正確編程運行時輸出y的值為i的概率Pi(i=1,2,3);
(2)甲、乙兩同學依據自己對程序框圖的理解,各自編寫程序重復運行n次后,統(tǒng)計記錄了輸出y的值為i(i=1,2,3)的頻數(shù),下面是甲、乙所作頻數(shù)統(tǒng)計表的部分數(shù)據: 甲的頻數(shù)統(tǒng)計表(部分)
運行次數(shù) | 輸出y=1的頻數(shù) | 輸出y=2的頻數(shù) | 輸出y=3的頻數(shù) |
50 | 24 | 19 | 7 |
… | … | … | … |
2000 | 1027 | 776 | 197 |
乙的頻數(shù)統(tǒng)計表(部分)
運行次數(shù) | 輸出y=1的頻數(shù) | 輸出y=2的頻數(shù) | 輸出y=3的頻數(shù) |
50 | 26 | 11 | 13 |
… | … | … | … |
2000 | 1051 | 396 | 553 |
當n=2000時,根據表中的數(shù)據,分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分數(shù)表示),并判斷甲、乙中誰所編寫的程序符合算法要求的可能性較大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C的方程:x2+y2﹣4x﹣6y+m=0,若圓C與直線a:x+2y﹣3=0相交于M、N兩點,且|MN|=2 .
(1)求m的值;
(2)是否存在直線l:x﹣y+c=0,使得圓上有四點到直線l的距離為 ,若存在,求出c的范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖①,在矩形中, , 是的中點,將三角形沿翻折到圖②的位置,使得平面平面.
(Ⅰ)在線段上確定點,使得平面,并證明;
(Ⅱ)求與所在平面構成的銳二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸,焦距為2,且長軸長是短軸長的倍.
(1)求橢圓的標準方程;
(2)設,過橢圓左焦點的直線交于、兩點,若對滿足條件的任意直線,不等式()恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學將100名高二文科生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A,B兩種不同的教學方式分別在甲、乙兩個班進行教改實驗.為了了解教學效果,期末考試后,陳老師對甲、乙兩個班級的學生成績進行統(tǒng)計分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為“成績優(yōu)秀”.
(Ⅰ)根據頻率分布直方圖填寫下面2×2列聯(lián)表;
甲班(A方式) | 乙班(B方式) | 總計 | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計 |
(Ⅱ)判斷能否在犯錯誤的概率不超過0.05的前提下認為:“成績優(yōu)秀”與教學方式有關?
附:.
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com