已知數(shù)列{an}為等差數(shù)列,公差d≠0,由{an}中的部分項(xiàng)組成的數(shù)列

a,a,…,a,…為等比數(shù)列,其中b1=1,b2=5,b3=17.

(1)求數(shù)列{bn}的通項(xiàng)公式;

(2)記Tn=Cb1+Cb2+Cb3+…+Cbn,求.

(1) bn=2·3n1-1 (2)


解析:

(1)由題意知a52=a1·a17,即(a1+4d)2=a1(a1+16d)a1d=2d2,

d≠0,∴a1=2d,數(shù)列{}的公比q==3,

=a1·3n1                   ①

=a1+(bn-1)d=                    ②

由①②得a1·3n1=·a1.∵a1=2d≠0,∴bn=2·3n1-1.

(2)Tn=Cb1+Cb2+…+Cbn

=C (2·30-1)+C·(2·31-1)+…+C(2·3n1-1)

=(C+C·32+…+C·3n)-(C+C+…+C)

=[(1+3)n-1]-(2n-1)= ·4n-2n+,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義:在數(shù)列{an}中,an>0且an≠1,若
a
an+1
n
為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2009=( 。
A、6026B、6024
C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:在數(shù)列{an}中,an>0且an≠1,若anan+1為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2013等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:在數(shù)列{an}中,an>0,且an≠1,若anan+1為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2011等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出“等和數(shù)列”的定義:從第二項(xiàng)開始,每一項(xiàng)與前一項(xiàng)的和都等于一個(gè)常數(shù),這樣的數(shù)列叫做“等和數(shù)列”,這個(gè)常數(shù)叫做“公和”.已知數(shù)列{an}為等和數(shù)列,公和為
1
2
,且a2=1,則a2009=( 。
A、-
1
2
B、
1
2
C、1
D、2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012--2013學(xué)年河南省高二上學(xué)期第一次考試數(shù)學(xué)試卷(解析版) 題型:選擇題

.定義:在數(shù)列{an}中,an>0且an≠1,若為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2009= (   )A.6026           B .6024               C.2                     D.4

 

查看答案和解析>>

同步練習(xí)冊答案