(2009•黃岡模擬)如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,D為AB的中點(diǎn).
(1)求證:AC1∥平面CDB1
(2)求二面角B-B1C-D的余弦值的大小.
分析:(1)利用矩形的性質(zhì)、三角形的中位線定理和線面平行的判定定理即可得出;
(2)通過(guò)建立空間直角坐標(biāo)系,利用兩個(gè)平面的法向量的夾角公式即可得出.
解答:(1)證明:連接BC1交B1C于E,連接DE,∵BC⊥CC1
∴四邊形BB1C1C為矩形,∴E為BC1的中點(diǎn),
∴DE∥AC1,∴AC1∥平面CDB1
(2)解:如圖所示,建立空間直角坐標(biāo)系,不妨設(shè)|BC|=2.
則A(2,0,0),B(0,2,0),D(1,1,0),B1(0,2,2).
CD
=(1,1,0)
,
CB1
=(0,2,2)

設(shè)平面B1CD的法向量
n
=(x,y,z)
,則
n
CD
=x+y=0
n
CB1
=2y+2z=0
,
令y=-1,則x=1,z=1.
n
=(1,-1,1)

取平面BB1C的法向量
m
=(1,0,0)
,
cos<
n
m
=
m
n
|
m
| |
n
|
=
1
3
×1
=
3
3
點(diǎn)評(píng):熟練掌握直三棱柱和矩形的性質(zhì)、三角形的中位線定理、線面平行的判定定理、通過(guò)建立空間直角坐標(biāo)系利用兩個(gè)平面的法向量的夾角公式求二面角等是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•黃岡模擬)某地正處于地震帶上,預(yù)計(jì)20年后該地將發(fā)生地震.當(dāng)?shù)貨Q定重新選址建設(shè)新城區(qū),同時(shí)對(duì)舊城區(qū)進(jìn)行拆除.已知舊城區(qū)的住房總面積為64am2,每年拆除的數(shù)量相同;新城區(qū)計(jì)劃用十年建成,第一年建設(shè)住房面積2am2,開始幾年每年以100%的增長(zhǎng)率建設(shè)新住房,然后從第五年開始,每年都比上一年減少2am2
(1)若10年后該地新、舊城區(qū)的住房總面積正好比目前翻一番,則每年舊城區(qū)拆除的住房面積是多少m2
(2)設(shè)第n(1≤n≤10且n∈N)年新城區(qū)的住房總面積為Snm2,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•黃岡模擬)如圖是一幾何體的平面展開圖,其中ABCD為正方形,E、F分別為PA、PD的中點(diǎn).在此幾何體中,給出下面四個(gè)結(jié)論:
①直線BE與直線CF異面;
②直線BE與直線AF異面;
③直線EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正確的命題的個(gè)數(shù)是
2
2
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•黃岡模擬)定義在R上的偶函數(shù)y=f(x)滿足:
①對(duì)x∈R都有f(x+6)=f(x)+f(3)
②f(-5)=-1;
③當(dāng)x1,x2∈[0,3]且x1≠x2時(shí),都有
f(x1)-f(x2)x1-x2
>0則
(1)f(2009)=
-1
-1
;
(2)若方程f(x)=0在區(qū)間[a,6-a]上恰有3個(gè)不同實(shí)根,實(shí)數(shù)a的取值范圍是
(-9,-3]
(-9,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•黃岡模擬)已知函數(shù)f(x)=
1-x2
1+x+x2
(x∈R)

(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)若(et+2)x2+etx+et-2≥0對(duì)滿足|x|≤1的任意實(shí)數(shù)x恒成立,求實(shí)數(shù)t的取值范圍(這里e是自然對(duì)數(shù)的底數(shù));
(Ⅲ)求證:對(duì)任意正數(shù)a、b、λ、μ,恒有f[(
λa+μb
λ+μ
)
2
]-f(
λa2b2
λ+μ
)≥(
λa+μb
λ+μ
)2
-
λa2b2
λ+μ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•黃岡模擬)四個(gè)大小相同的小球分別標(biāo)有數(shù)字1、1、2、2,把它們放在一個(gè)盒子里,從中任意摸出兩個(gè)小球,它們所標(biāo)有的數(shù)字分別為x,y,記ξ=x+y.
(1)求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望;
(2)設(shè)“函數(shù)f(x)=x2-ξx-1在區(qū)間(2,3)上有且只有一個(gè)零點(diǎn)”為事件A,求事件A發(fā)生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案