【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系xOy中,直線C1的參數(shù)方程為t為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系下,圓C2的方程為ρ=﹣2cosθ+2sinθ

)求直線C1的普通方程和圓C2的圓心的極坐標(biāo);

)設(shè)直線C1和圓C2的交點(diǎn)為A,B,求弦AB的長.

【答案】;(

【解析】

試題()把參數(shù)方程化為直角坐標(biāo)方程,求出圓心的直角坐標(biāo),再把它化為極坐標(biāo)即可;()由()求得到直線的距離,再利用圓的弦長公式,即可求解弦長.

試題解析:()由C1的參數(shù)方程消去參數(shù)t得普通方程為 x﹣y+1=0

C2的直角坐標(biāo)方程(x+12+=4,

所以圓心的直角坐標(biāo)為(﹣1,),所以圓心的一個(gè)極坐標(biāo)為(2,).

)由()知(﹣1)到直線x﹣y+1="0" 的距離 d==,

所以AB=2=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC—A1B1C1中,BC=3,AB=4,AC=CC1=5,M,N分別是A1B,B1C1的中點(diǎn).

(1)求證:MN//平面ACC1A1

(2)求點(diǎn)N到平面MBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,底面ABC,.點(diǎn)D,E,N分別為棱PA,PCBC的中點(diǎn),M是線段AD的中點(diǎn),,.

1)求證:平面BDE;

2)求二面角C-EM-N的正弦值.

3)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓,為左、右焦點(diǎn),為短軸端點(diǎn),且,離心率為,為坐標(biāo)原點(diǎn).

(1)求橢圓的方程,

(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓C恒有兩個(gè)交點(diǎn),,且滿足?若存在,求出該圓的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險(xiǎn)公司利用簡單隨機(jī)抽樣方法,對投保車輛進(jìn)行抽樣,樣本車輛中每輛車的賠付結(jié)果統(tǒng)計(jì)如下:

賠付金額()

0

1 000

2 000

3 000

4 000

車輛數(shù)()

500

130

100

150

120

(1)若每輛車的投保金額均為2800,估計(jì)賠付金額大于投保金額的概率.

(2)在樣本車輛中,車主是新司機(jī)的占10%,在賠付金額為4000元的樣本車輛中,車主是新司機(jī)的占20%,估計(jì)在已投保車輛中,新司機(jī)獲賠金額為4000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采取分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對學(xué)生進(jìn)行視力調(diào)查。

I)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目。

II)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,

1)列出所有可能的抽取結(jié)果;

2)求抽取的2所學(xué)校均為小學(xué)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)站針對“2016年春節(jié)放假安排開展網(wǎng)上問卷調(diào)查,提出了A,B兩種放假方案,調(diào)查結(jié)果如表:(單位:萬人)

人群

青少年

中年人

老年人

支持A方案

200

400

800

支持B方案

100

100

n

已知從所有參與調(diào)查的人中任選1人是老年人的概率為.

(1)n的值;

(2)從參與調(diào)查的老年人中,用分層抽樣的方法抽取6人,在這6人中任意選取2人,求恰好有1支持B方案的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】4名書法比賽一等獎(jiǎng)的同學(xué)和2名繪畫比賽一等獎(jiǎng)的同學(xué)中選出2名志愿者,參加某項(xiàng)服務(wù)工作.

(1)求選出的兩名志愿者都是獲得書法比賽一等獎(jiǎng)的同學(xué)的概率;

(2)求選出的兩名志愿者中一名是獲得書法比賽一等獎(jiǎng),另一名是獲得繪畫比賽一等獎(jiǎng)的同學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)若在區(qū)間存在一個(gè),使得成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案