【題目】設(shè)函數(shù)為自然對數(shù)的底數(shù)), .

(1)若,且直線分別與函數(shù)的圖象交于,求兩點間的最短距離;

(2)若時,函數(shù)的圖象恒在的圖象上方,求實數(shù)的取值范圍.

【答案】(1).(2)的取值范圍是.

【解析】試題分析:

(1)由題意求得PQ長度的函數(shù)解析式,然后利用導(dǎo)函數(shù)可得.

(2),結(jié)合函數(shù)的性質(zhì)和恒成立的條件可得的取值范圍是.

試題解析:

(Ⅰ)因為,所以.令,即,因為,當(dāng)時, , ,所以,所以上遞增,所以,∴時, 的最小值為,所以.

(Ⅱ)令

, ,因為當(dāng)時恒成立,所以函數(shù)上單調(diào)遞增,∴當(dāng)時恒成立;

故函數(shù)上單調(diào)遞增,所以時恒成立.

當(dāng)時, 單調(diào)遞增,即.

恒成立.

當(dāng)時,因為單調(diào)遞增,所以總存在,使在區(qū)間,導(dǎo)致在區(qū)間上單調(diào)遞減,而,所以當(dāng)時, ,這與恒成立矛盾,所以不符合題意,故符合條件的的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在各棱長均為4的直四棱柱中,底面為菱形, , 為棱上一點,且.

(1)求證:平面平面;

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】教育學(xué)家分析發(fā)現(xiàn)加強語文樂隊理解訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān),某校興趣小組為了驗證這個結(jié)論,從該校選擇甲乙兩個同軌班級進行試驗,其中甲班加強閱讀理解訓(xùn)練,乙班常規(guī)教學(xué)無額外訓(xùn)練,一段時間后進行數(shù)學(xué)應(yīng)用題測試,統(tǒng)計數(shù)據(jù)情況如下面的列聯(lián)表(單位:人)

(1)能夠據(jù)此判斷有97.5%把握熱內(nèi)加強語文閱讀訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān)?

(2)經(jīng)過多次測試后,小明正確解答一道數(shù)學(xué)應(yīng)用題所用的時間在5—7分鐘,小剛正確解得一道數(shù)學(xué)應(yīng)用題所用的時間在6—8分鐘,現(xiàn)小明、小剛同時獨立解答同一道數(shù)學(xué)應(yīng)用題,求小剛比小明現(xiàn)正確解答完的概率;

(3)現(xiàn)從乙班成績優(yōu)秀的8名同學(xué)中任意抽取兩人,并對他們點答題情況進行全程研究,記A、B兩人中被抽到的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),關(guān)于的不等式只有兩個整數(shù)解,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓恰好經(jīng)過橢圓的兩個焦點和兩個頂點.

(1)求橢圓的方程;

(2)經(jīng)過原點的直線 (不與坐標(biāo)軸重合)交橢圓兩點, 軸,垂足為,連接并延長交橢圓,證明:以線段為直徑的圓經(jīng)過點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式為12x2﹣ax>a2
(1)當(dāng)a=2時,求不等式的解集;
(2)當(dāng)a∈R時,求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列{an}中,a2﹣a1=2,且2a2為3a1和a3的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=2log3an+1,且數(shù)列{ }的前n項和為Tn . 求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一某班的一次數(shù)學(xué)測試成績(滿分為100分)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖,據(jù)此解答如下問題;
(1)求分數(shù)在[50,60)的頻率及全班的人數(shù);
(2)求分數(shù)在[80,90)之間的頻數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高;
(3)根據(jù)頻率分布直方圖,估計該班數(shù)學(xué)成績的平均數(shù)與中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中,側(cè)面為矩形, , 的中點, 交于點 側(cè)面.

(1)證明: ;

(2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案