【題目】如圖所示,四邊形EFGH為空間四邊形ABCD的一個(gè)截面,若截面為平行四邊形.
(1)求證:AB∥平面EFGH
(2)若AB=4,CD=6,求四邊形EFGH周長的取值范圍.
【答案】(1)證明見解析; (2) (8,12).
【解析】
(1)根據(jù)幾何體的結(jié)構(gòu)特征,利用線面平行的判定定理,即可證得平面;
(2)由平面,設(shè),根據(jù)四邊形為平行四邊形,求得,得到四邊形周長的表達(dá)式,即可求解.
(1)由題意,∵四邊形EFGH為平行四邊形,∴EF∥HG,
∵HG平面ABD,EF平面ABD,∴EF∥平面ABD,
又∵EF平面ABC,平面ABD∩平面ABC=AB,∴EF∥AB,
又∵AB平面EFGH,EF平面EFGH,∴AB∥平面EFGH.
同理可證,平面EFGH.
(2)設(shè),∵四邊形為平行四邊形,
∴,則,∴,
∴四邊形EFGH的周長,
又∵,∴,
即四邊形周長的取值范圍是(8,12).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
若是函數(shù)的極值點(diǎn),求曲線在點(diǎn)處的切線方程;
若函數(shù)在區(qū)間上為單調(diào)遞減函數(shù),求實(shí)數(shù)a的取值范圍;
設(shè)m,n為正實(shí)數(shù),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某顏料公司生產(chǎn)A,B兩種產(chǎn)品,其中生產(chǎn)每噸A產(chǎn)品,需要甲染料1噸,乙染料4噸,丙染料2噸,生產(chǎn)每噸B產(chǎn)品,需要甲染料1噸,乙染料0噸,丙染料5噸,且該公司一天之內(nèi)甲、乙、丙三種染料的用量分別不超過50噸,160噸和200噸,如果A產(chǎn)品的利潤為300元/噸,B產(chǎn)品的利潤為200元/噸,設(shè)公司計(jì)劃一天內(nèi)安排生產(chǎn)A產(chǎn)品x噸,B產(chǎn)品y噸.
(I)用x,y列出滿足條件的數(shù)學(xué)關(guān)系式,并在下面的坐標(biāo)系中畫出相應(yīng)的平面區(qū)域;
(II)該公司每天需生產(chǎn)A,B產(chǎn)品各多少噸可獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù)y=4cos2x-4sinxcosx-1(x∈R).
(1)求出函數(shù)的最小正周期;
(2)求出函數(shù)的最大值及其相對應(yīng)的x值;
(3)求出函數(shù)的單調(diào)增區(qū)間;
(4)求出函數(shù)的對稱軸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足條件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函數(shù)f(x)的解析式;
(2)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不等式ax2-5x+b>0的解是-3<x<2,設(shè)A={x|bx2-5x+a>0},B={x|}.
(1)求a,b的值;
(2)求A∩B和A∪(UB).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)記,是的導(dǎo)函數(shù),如果是函數(shù)的兩個(gè)零點(diǎn),且滿足,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,由直三棱柱和四棱錐構(gòu)成的幾何體中,,平面平面
(I)求證:;
(II)若M為中點(diǎn),求證:平面;
(III)在線段BC上(含端點(diǎn))是否存在點(diǎn)P,使直線DP與平面所成的角為?若存在,求得值,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com