【題目】解關(guān)于x的不等式
【答案】見解析
【解析】
根據(jù)a的范圍,分a等于0和a大于0兩種情況考慮:當(dāng)時(shí),把代入不等式得到一個(gè)一元一次不等式,求出不等式的解集;當(dāng)a大于0時(shí),把原不等式的左邊分解因式,再根據(jù)a大于1,及a大于0小于1分三種情況取解集,當(dāng)a大于1時(shí),根據(jù)小于1,利用不等式取解集的方法求出解集;當(dāng)時(shí),根據(jù)完全平方式大于0,得到x不等于1;當(dāng)a大于0小于1時(shí),根據(jù)大于1,利用不等式取解集的方法即可求出解集,綜上,寫出a不同取值時(shí),各自的解集即可.
當(dāng)時(shí),不等式化為,;
當(dāng)時(shí),原不等式化為,
當(dāng)時(shí),不等式的解為或;
當(dāng)時(shí),不等式的解為;
當(dāng)時(shí),不等式的解為或;
綜上所述,得原不等式的解集為:
當(dāng)時(shí),解集為;當(dāng)時(shí),解集為或;
當(dāng)時(shí),解集為;當(dāng)時(shí),解集為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了工廠技術(shù)改造后某種型號(hào)設(shè)備的使用年限x和所支出的維修費(fèi)y(萬(wàn)元)的幾組對(duì)照數(shù)據(jù):
x(年) | 2 | 3 | 4 | 5 | 6 |
y(萬(wàn)元) | 1 | 2.5 | 3 | 4 | 4.5 |
(1)若知道y對(duì)x呈線性相關(guān)關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)已知該工廠技術(shù)改造前該型號(hào)設(shè)備使用10年的維修費(fèi)用為9萬(wàn)元,試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)該型號(hào)設(shè)備技術(shù)改造后,使用10年的維修費(fèi)用能否比技術(shù)改造前降低?參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知稱為,的二維平方平均數(shù),稱為,的二維算術(shù)平均數(shù),稱為,的二維幾何平均數(shù),稱為,的二維調(diào)和平均數(shù),其中,均為正數(shù).
(1)試判斷與的大小,并證明你的猜想.
(2)令,,試判斷與的大小,并證明你的猜想.
(3)令,,,試判斷、、三者之間的大小關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于數(shù)集,其中, ,定義向量集.若對(duì)于任意,使得,則稱具有性質(zhì).例如具有性質(zhì).
()若,且具有性質(zhì),求的值.
()若具有性質(zhì),求證: ,且當(dāng)時(shí), .
()若具有性質(zhì),且, (為常數(shù)),求有窮數(shù)列, , , 的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某玩具所需成本費(fèi)用為P元,且P=1 000+5x+x2,而每套售出的價(jià)格為Q元,其中Q(x)=a+ (a,b∈R),
(1)問:玩具廠生產(chǎn)多少套時(shí),使得每套所需成本費(fèi)用最少?
(2)若生產(chǎn)出的玩具能全部售出,且當(dāng)產(chǎn)量為150套時(shí)利潤(rùn)最大,此時(shí)每套價(jià)格為30元,求a,b的值.(利潤(rùn)=銷售收入-成本).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓E經(jīng)過M(﹣1,0),N(0,1),P(,)三點(diǎn).
(1)求圓E的方程;
(2)若過點(diǎn)C(2,2)作圓E的兩條切線,切點(diǎn)分別是A,B,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年2月25日,平昌冬奧會(huì)閉幕式上的“北京8分鐘”驚艷了世界。我們學(xué)校為了讓我們更好的了解奧運(yùn),了解新時(shí)代祖國(guó)的科技發(fā)展,在高二年級(jí)舉辦了一次知識(shí)問答比賽。比賽共設(shè)三關(guān),第一、二關(guān)各有兩個(gè)問題,兩個(gè)問題全答對(duì),可進(jìn)入下一關(guān);第三關(guān)有三個(gè)問題,只要答對(duì)其中兩個(gè)問題,則闖關(guān)成功。每過一關(guān)可一次性獲得分別為1、2、3分的積分獎(jiǎng)勵(lì),高二、一班對(duì)三關(guān)中每個(gè)問題回答正確的概率依次為,且每個(gè)問題回答正確與否相互獨(dú)立.
(1)記表示事件“高二、一班未闖到第三關(guān)”,求的值;
(2)記表示高二、一班所獲得的積分總數(shù),求的分布列和期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com