在平面直角坐標(biāo)系xOy中,以O(shè)x軸為始邊作銳角α,其終邊與單位圓相交于A點(diǎn),若A點(diǎn)的橫坐標(biāo),則的值為   
【答案】分析:根據(jù)題意畫出圖形,作AB垂直于x軸,由單位圓的半徑為1,且A的橫坐標(biāo),根據(jù)勾股定理求出|AB|的長(zhǎng),即為A的縱坐標(biāo),根據(jù)銳角三角函數(shù)定義可知tanα的值為AB:OB,求出tanα的值,然后利用二倍角的正切函數(shù)公式化簡(jiǎn)tanα,根據(jù)其值得到關(guān)于tan的方程,求出方程的解得到tan的值,最后把所求式子利用兩角和與差的正切函數(shù)公式及特殊角的三角函數(shù)值化簡(jiǎn)后,將tan的值代入即可求出值.
解答:解:根據(jù)題意畫出圖形,如圖所示:

過(guò)A作AB⊥x軸,
∵A點(diǎn)的橫坐標(biāo),即|OB|=,又|OA|=1,
在Rt△AOB中,根據(jù)勾股定理得:|AB|=,
∴A的縱坐標(biāo)為,即tanα=
∴tanα==,即(3tan-1)(tan+3)=0,
解得:tanα=或tanα=-3(舍去),
==2.
故答案為:2
點(diǎn)評(píng):此題考查了銳角三角函數(shù)定義,二倍角的正切函數(shù)公式,兩角和與差的正切函數(shù)公式,以及特殊角的三角函數(shù)值,利用了數(shù)形結(jié)合的思想,熟練運(yùn)用公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過(guò)坐標(biāo)原點(diǎn)O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿足PF=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案