【題目】已知橢圓的離心率為,以橢圓E的長(zhǎng)軸和短軸為對(duì)角線的四邊形的面積為.

1)求橢圓E的方程;

2)若直線與橢圓E相交于AB兩點(diǎn),設(shè)P為橢圓E上一動(dòng)點(diǎn),且滿足O為坐標(biāo)原點(diǎn)).當(dāng)時(shí),求的最小值.

【答案】(1)(2)

【解析】

1)由離心率及四邊形的面積和a,b,c之間的關(guān)系求出橢圓的方程;

2)將直線與橢圓聯(lián)立求出兩根之和及兩根之積,,可得.進(jìn)而寫(xiě)出P的坐標(biāo),P在橢圓上求出m的范圍,進(jìn)而求出的表達(dá)式,由反比例函數(shù)的單調(diào)性求出它的最小值.

解:(1)依題意得,.以橢圓E的長(zhǎng)軸和短軸為對(duì)角線的四邊形的面積為,則,解得,.

所以橢圓E的方程為.

2)設(shè)A,B兩點(diǎn)的坐標(biāo)分別為,

聯(lián)立方程,

,

因?yàn)?/span>,即,所以.

所以點(diǎn),又點(diǎn)P在橢圓C上,所以有,

化簡(jiǎn)得

所以,化簡(jiǎn),因?yàn)?/span>,所以,

因?yàn)?/span>,

,,所以.

,則,

當(dāng)時(shí),取得最小值,最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓錐(其中為頂點(diǎn),為底面圓心)的側(cè)面積與底面積的比是,則圓錐與它外接球(即頂點(diǎn)在球面上且底面圓周也在球面上)的體積比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線與直線平行,且過(guò)坐標(biāo)原點(diǎn),圓的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(1)求直線和圓的極坐標(biāo)方程;

(2)設(shè)直線和圓相交于點(diǎn)兩點(diǎn),求的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)上的偶函數(shù),其圖象關(guān)于點(diǎn)對(duì)稱(chēng),且在區(qū)間上是單調(diào)函數(shù),則的值是( )

A. B. C. D. 無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某國(guó)有53座城市,任意兩座城市之間要么有一條雙向公路直達(dá),要么沒(méi)有直接相連的公路。已知這53座城市之間共有312條公路,并且由任何一座城市出發(fā)通過(guò)公路均能到達(dá)其余各城市。每一座城市至多向其余12座城市引出公路,且每走一條公路需要繳納10元路費(fèi)。現(xiàn)甲在城市A,且身上僅有120元。甲是否一定能到達(dá)任意一座城市?證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,平面,點(diǎn)在棱上.

(Ⅰ)求證:平面平面;

(Ⅱ)若直線平面,求此時(shí)三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】春節(jié)期間某商店出售某種海鮮禮盒,假設(shè)每天該禮盒的需求量在范圍內(nèi)等可能取值,該禮盒的進(jìn)貨量也在范圍內(nèi)取值(每天進(jìn)1次貨).商店每銷(xiāo)售1盒禮盒可獲利50元;若供大于求,剩余的削價(jià)處理,每處理1盒禮盒虧損10元;若供不應(yīng)求,可從其它商店調(diào)撥,銷(xiāo)售1盒禮盒可獲利30.設(shè)該禮盒每天的需求量為盒,進(jìn)貨量為盒,商店的日利潤(rùn)為.

1)求商店的日利潤(rùn)關(guān)于需求量的函數(shù)表達(dá)式;

2)試計(jì)算進(jìn)貨量為多少時(shí),商店日利潤(rùn)的期望值最大?并求出日利潤(rùn)期望值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十二生肖是十二地支的形象化代表,即子(鼠)、丑(牛)、寅(虎)、卯(兔)、辰(龍)、巳(蛇)、午(馬)、未(羊)、申(猴)、酉(雞)、戌(狗)、亥(豬),每一個(gè)人的出生年份對(duì)應(yīng)了十二種動(dòng)物中的一種,即自己的屬相.現(xiàn)有印著十二生肖圖案的毛絨娃娃各一個(gè),小張同學(xué)的屬相為馬,小李同學(xué)的屬相為羊,現(xiàn)在這兩位同學(xué)從這十二個(gè)毛絨娃娃中各隨機(jī)取一個(gè)(不放回),則這兩位同學(xué)都拿到自己屬相的毛絨娃娃的概率是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案