A. | 4+2$\sqrt{3}$ | B. | 4-2$\sqrt{3}$ | C. | $\sqrt{3}$-1 | D. | $\sqrt{3}$+1 |
分析 先根據(jù)三角形面積公式求得ac的值,利用正弦定理及題設(shè)中sinA+sinC=2sinB,可知a+c的值,代入到余弦定理中求得b.
解答 解:由已知可得:$\frac{1}{2}$acsin30°=$\frac{3}{2}$,解得:ac=6,
又sinA+sinC=2sinB,由正弦定理可得:a+c=2b,
由余弦定理:b2=a2+c2-2accosB=(a+c)2-2ac-$\sqrt{3}$ac=4b2-12-6$\sqrt{3}$,
∴解得:b2=4+2$\sqrt{3}$,
∴b=1+$\sqrt{3}$.
故選:D.
點評 本題主要考查了余弦定理和正弦定理的應用,作為解三角形的常用定理,應用熟練記憶這兩個定理及其變式,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}+1}{2}$ | B. | $\frac{\sqrt{3}-1}{2}$ | C. | $\sqrt{3}$-1 | D. | $\frac{\sqrt{5}-1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [1,16] | B. | [6,14] | C. | [4,16] | D. | [$\sqrt{13}$,3$\sqrt{5}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{10}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{2\sqrt{5}}}{5}$ | D. | $\frac{{4\sqrt{5}}}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com