【題目】已知二次函數(shù)fx)滿足f(0)=2,fx)-fx-1)=2x+1,求函數(shù)fx2+1)的最小值.

【答案】

【解析】

設(shè)f(x)=ax2+bx+c,a≠0,推導(dǎo)出f(0)=c=2,2ax-a+b=2x+1,從而f(x)=x2+2x+2,由此能求出函數(shù)f(x2+1)的最小值.

解:∵二次函數(shù)fx)滿足f(0)=2,fx)-fx-1)=2x+1,

∴設(shè)fx)=ax2+bx+c,a≠0,

f(0)=c=2.

ax2+bx+c-ax-1)2-bx-1)-c=2x+1.

2ax-a+b=2x+1,

,解得,

fx)=x2+2x+2,

t=x2+1,則t≥1.

函數(shù)fx2+1)即為ft)=t2+2t+2=(t+1)2+1,

ft)在[1,+∞)上單調(diào)遞增.

ftmin=f(1)=5,

∴函數(shù)fx2+1)的最小值為5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計劃購買1臺機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時,可以額外購買這種零件作為備件,每個200元.在機(jī)器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機(jī)器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得如圖柱狀圖:

記x表示1臺機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺機(jī)器在購買易損零件上所需的費(fèi)用(單位:元),n表示購機(jī)的同時購買的易損零件數(shù).
(1)若n=19,求y與x的函數(shù)解析式;
(2)若要求“需更換的易損零件數(shù)不大于n”的頻率不小于0.5,求n的最小值;
(3)假設(shè)這100臺機(jī)器在購機(jī)的同時每臺都購買19個易損零件,或每臺都購買20個易損零件,分別計算這100臺機(jī)器在購買易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購買1臺機(jī)器的同時應(yīng)購買19個還是20個易損零件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=sinx﹣ cosx的圖象可由函數(shù)y=2sinx的圖象至少向右平移個單位長度得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】試比較nn1(n+1)n(nN*)的大小,分別取n=1,2,3,4,5加以試驗,根據(jù)試驗結(jié)果猜測一個一般性結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx﹣x+1.
(1)討論f(x)的單調(diào)性;
(2)證明當(dāng)x∈(1,+∞)時,1< <x;
(3)設(shè)c>1,證明當(dāng)x∈(0,1)時,1+(c﹣1)x>cx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A=log23log316,B=10sin210°,若不等式Acos2x-3mcosx+B≤0對任意的xR都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓x2+y2+2x﹣15=0的圓心為A,直線l過點(diǎn)B(1,0)且與x軸不重合,l交圓A于C,D兩點(diǎn),過B作AC的平行線交AD于點(diǎn)E.
(1)證明|EA|+|EB|為定值,并寫出點(diǎn)E的軌跡方程;
(2)設(shè)點(diǎn)E的軌跡為曲線C1 , 直線l交C1于M,N兩點(diǎn),過B且與l垂直的直線與圓A交于P,Q兩點(diǎn),求四邊形MPNQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線l1 , l2分別是函數(shù)f(x)= 圖象上點(diǎn)P1 , P2處的切線,l1與l2垂直相交于點(diǎn)P,且l1 , l2分別與y軸相交于點(diǎn)A,B,則△PAB的面積的取值范圍是( 。
A.(0,1)
B.(0,2)
C.(0,+∞)
D.(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案