設(shè)函數(shù)h(x)=
f(x),當(dāng)f(x)≤g(x)時(shí)
g(x),當(dāng)f(x)>g(x)時(shí)
其中f(x)=|x|,g(x)=-(x-1)2+3,則h(x+1)的最大值為( 。
A、0B、1C、2D、3
分析:本題考查的是的是分段函數(shù)問(wèn)題.在解答時(shí)應(yīng)先結(jié)合函數(shù)f(x)、g(x)的圖象,根據(jù)所給分段函數(shù)的意義寫出分段函數(shù)h(x)的解析式,進(jìn)而求得函數(shù)h(x)的最大值,由于h(x+1)的圖象可以看作由函數(shù)h(x)的圖象向左平移1個(gè)單位得到.進(jìn)而獲得問(wèn)題的解答.
解答:精英家教網(wǎng)解:由題意可知:函數(shù)f(x)、g(x)的圖象為:
                              
由圖象可知:函數(shù)h(x)的解析式為:
h(x)=
-(x-1)2+3,x≤-1
|x|,-1<x≤2
-(x-1)2+3,x>2

當(dāng)x≤-1時(shí),hmax(x)=-1;
當(dāng)-1<x≤2時(shí),hmax(x)=2;
當(dāng)x>2時(shí),h(x)<2.
又由于h(x+1)的圖象可以看作由函數(shù)h(x)的圖象向左平移1個(gè)單位得到.
∴h(x+1)的最大值為2.
故選C.
點(diǎn)評(píng):本題考查的是分段函數(shù)、二次函數(shù)、絕對(duì)值函數(shù)等知識(shí)的綜合類問(wèn)題.在解答的過(guò)程當(dāng)中充分體現(xiàn)了分類討論的思想、數(shù)形結(jié)合的思想以及問(wèn)題轉(zhuǎn)化的思想.值得同學(xué)們體會(huì)反思.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù) f(x)=
1
4
x2-
1
2
(x∈R),g(x)=lg
3-x
3+x
(-3<x<3)
(1)分別判斷函數(shù)f(x)和g(x)的奇偶性;
(2)設(shè)函數(shù)h(x)=f(x)+g(x),問(wèn):函數(shù)h(x)在區(qū)間(-2,2)上是否有零點(diǎn)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cos2(x+
π
12
),g(x)=1+
1
2
sin2x.
(1)設(shè)x=x0是函數(shù)y=f(x)圖象的一條對(duì)稱軸,求g(x0)的值.
(2)設(shè)函數(shù)h(x)=f(x)+g(x),若不等式|h(x)-m|≤1在[-
π
12
,
12
]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f′(x),g′(x)分別是二次函數(shù)f(x)和三次函數(shù)g(x)的導(dǎo)函數(shù),它們?cè)谕蛔鴺?biāo)系下的圖象如圖所示,設(shè)函數(shù)h(x)=f(x)-g(x),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•重慶一模)設(shè)函數(shù)f(x)=-x2+2ax+m,g(x)=
ax

(I)若函數(shù)f(x),g(x)在[1,2]上都是減函數(shù),求實(shí)數(shù)a的取值范圍;
(II)當(dāng)a=1時(shí),設(shè)函數(shù)h(x)=f(x)g(x),若h(x)在(0,+∞)內(nèi)的最大值為-4,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•武漢模擬)已知函數(shù)f'(x)、g'(x)分別是二次函數(shù)f(x)和三次函數(shù)g(x)的導(dǎo)函數(shù),它們?cè)谕蛔鴺?biāo)系下的圖象如圖所示:
①若f(1)=1,則f(-1)=
1
1

②設(shè)函數(shù)h(x)=f(x)-g(x),則h(-1),h(0),h(1)的大小關(guān)系為
h(0)<h(1)<h(-1)
h(0)<h(1)<h(-1)
.(用“<”連接)

查看答案和解析>>

同步練習(xí)冊(cè)答案