【題目】已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為,直線與拋物線交于兩點(diǎn),過這兩點(diǎn)分別作拋物線的切線,且這兩條切線相交于點(diǎn).

(1)若的坐標(biāo)為,求的值;

(2)設(shè)線段的中點(diǎn)為,點(diǎn)的坐標(biāo)為,過的直線與線段為直徑的圓相切,切點(diǎn)為,且直線與拋物線交于兩點(diǎn),證明: .

【答案】(1) (2)

【解析】試題分析:

1)由題意可得拋物線的方程為,設(shè)切線的方程為,將其代入拋物線方程可得,根據(jù)判別式為零可得,驗證可得。(2)由條件得以線段為直徑的圓為圓,只考慮斜率為正數(shù)的直線,因為為直線與圓的切點(diǎn),所以, ,故。又直線的方程為,將其代入拋物線方程由代數(shù)法可得弦長,從而可得結(jié)論成立。

試題解析

(1)由拋物線的焦點(diǎn)到準(zhǔn)線的距離為,得

所以拋物線的方程為.

設(shè)切線的方程為,

消去整理得

,

當(dāng)時,可得的橫坐標(biāo)為,則

當(dāng)時,同理可得.

綜上可得

(2)由(1)知,

所以以線段為直徑的圓為圓,

根據(jù)對稱性,只要探討斜率為正數(shù)的直線即可,

因為為直線與圓的切點(diǎn),

所以, ,

所以

所以,

所以直線的方程為,

消去整理得

因為直線與拋物線交于兩點(diǎn),

所以,

設(shè),

所以,

所以。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知,在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù));在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程是.

(Ⅰ)求證: ;

(Ⅱ)設(shè)點(diǎn)的極坐標(biāo)為 為直線, 的交點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中, ,分別過點(diǎn)作直線, 垂直平面,且, .

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,滿足的等差中項為).

(1)求數(shù)列的通項公式;

(2)是否存在正整數(shù),是不等式)恒成立,若存在,求出的最大值;若不存在,請說明理由.

(3)設(shè) ,若集合恰有個元素,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 的中點(diǎn),如圖 2.

(1)求證: 平面;

(2)求證: 平面

(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是正四棱柱的一個截面,此截面與棱交于點(diǎn) , ,其中分別為棱上一點(diǎn).

(1)證明:平面平面;

(2)為線段上一點(diǎn),若四面體與四棱錐的體積相等,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2+2x﹣4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程;
(2)從圓C外一點(diǎn)P(x1 , y1)向該圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使得|PM|取得最小值的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于關(guān)于x的不等式ax2+bx+c<0的解集為(﹣∞,﹣2)∪(﹣ ,+∞),則不等式ax2﹣bx+c>0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x),當(dāng)年產(chǎn)量不足80千件時,C(x)=(萬元).當(dāng)年產(chǎn)量不小于80千件時,C(x)=51x+(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(Ⅰ)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

同步練習(xí)冊答案