19.我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中有一問(wèn)題“今有垣厚五尺,兩鼠對(duì)穿,初日各一尺,大鼠日自倍,小鼠日自半,問(wèn)幾何日相逢?”問(wèn)相逢時(shí)大鼠穿墻3$\frac{8}{17}$尺.

分析 因?yàn)榇罄鲜蟮谝惶焱?尺,小老鼠第一天也挖1尺,則第二天大老鼠挖2尺,小老鼠挖0.5尺,所以前兩天大小老鼠共穿1+2+1+0.5=4.5尺,第三天需要穿0.5尺.第三天大老鼠穿4尺,小老鼠穿$\frac{1}{4}$尺,此時(shí)設(shè)大老鼠打了x尺,小老鼠則打了(0.5-x)尺 根據(jù)打洞時(shí)間相等:x÷4=(0.5-x)÷$\frac{1}{4}$,由此求出x的值,進(jìn)而求出兩只老鼠打通洞各挖的米數(shù).

解答 解:因?yàn)榍皟商齑笮±鲜蠊泊?+2+1+0.5=4.5尺,
所以第三天需要穿5-4.5=0.5尺就可以碰面.
第三天大老鼠穿4尺,小老鼠穿$\frac{1}{4}$尺,
設(shè)大老鼠打了x尺,小老鼠則打了(0.5-x)尺,
所以x÷4=(0.5-x)÷$\frac{1}{4}$,所以x=$\frac{8}{17}$,
所以三天總的來(lái)說(shuō):大老鼠打了1+2+$\frac{8}{17}$=3$\frac{8}{17}$(尺),
故答案為:3$\frac{8}{17}$.

點(diǎn)評(píng) 關(guān)鍵是根據(jù)題意得出第三天需要穿0.5尺就利用碰面,再根據(jù)打洞時(shí)間相等:列出方程x÷4=(0.5-x)÷$\frac{1}{4}$進(jìn)行解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知點(diǎn)P(sinα,cosα)在第三象限,則角α的終邊在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.為了了解學(xué)生的視力情況,隨機(jī)抽查了一批學(xué)生的視力,將抽查結(jié)果繪制成頻率分布直方圖(如圖所示),若在[5.0,5.4]內(nèi)的學(xué)生人數(shù)是10,則根據(jù)圖中數(shù)據(jù)可得被樣本數(shù)據(jù)的中位數(shù)是4.456;視力在[3.8,4.2]人數(shù)為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.不等式$\frac{1}{x-1}$≤1的解集為( 。
A.(-∞,1)∪[2,+∞)B.(-∞,0]∪(1,+∞)C.(1,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.重慶某教育研究機(jī)構(gòu)對(duì)重慶38個(gè)區(qū)縣中學(xué)生體重進(jìn)行調(diào)查,按地域把它們分成甲、乙、丙、丁四個(gè)組,對(duì)應(yīng)區(qū)縣個(gè)數(shù)為4,10,16,8,若用分層抽樣抽取9個(gè)城市,則丁組應(yīng)抽取的區(qū)縣個(gè)數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.(1)計(jì)算:7$\root{3}{3}$-3$\root{3}{24}$-6$\root{3}{\frac{1}{9}}$+$\root{4}{3\root{3}{3}}$+${(\frac{1}{4})}^{\frac{-1}{2}}$.
(2)已知1oga2=m,1oga3=n.求a2m+n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=x3-3x,當(dāng)x在區(qū)間任意取值時(shí),函數(shù)值不小于0又不大于2的概率是( 。
A.$\frac{3-\sqrt{3}}{4}$B.$\frac{3-\sqrt{3}}{3}$C.$\frac{2-\sqrt{3}}{4}$D.$\frac{2-\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某醫(yī)學(xué)院讀書(shū)協(xié)會(huì)欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該協(xié)會(huì)分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如圖頻數(shù)分布直方圖:
該協(xié)會(huì)確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線(xiàn)性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)記選取的2組數(shù)據(jù)相隔的月份數(shù)為X,若是相鄰2組的數(shù)據(jù),則X=0,求X的分布列及數(shù)學(xué)期望;
(2)已知選取的是1月與6月的兩組數(shù)據(jù).
(i)請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出就診人數(shù)y關(guān)于晝夜溫差x的線(xiàn)性回歸方程;
(ii)若由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線(xiàn)性回歸方程是理想的,試問(wèn)該協(xié)會(huì)所得線(xiàn)性回歸方程是否理想?
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$),$\widehat{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知A(2,5),B(4,1),若點(diǎn)P(x,y)在線(xiàn)段AB上,則2x-y的最大值為7.

查看答案和解析>>

同步練習(xí)冊(cè)答案