【題目】某區(qū)選派7名隊(duì)員代表本區(qū)參加全市青少年圍棋錦標(biāo)賽,其中3名來(lái)自A學(xué)校且1名為女棋手,另外4名來(lái)自B學(xué)校且2名為女棋手從這7名隊(duì)員中隨機(jī)選派4名隊(duì)員參加第一階段的比賽
求在參加第一階段比賽的隊(duì)員中,恰有1名女棋手的概率;
Ⅱ設(shè)X為選出的4名隊(duì)員中A、B兩校人數(shù)之差的絕對(duì)值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,底面是矩形,平面,AB 1,AP AD 2.
(1)求直線與平面所成角的正弦值;
(2)若點(diǎn)M,N分別在AB,PC上,且平面,試確定點(diǎn)M,N的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體ABCDEF中,四邊形ABCD為菱形,且,平面ABCD,,且,.
Ⅰ求證:平面ACF;
Ⅱ求直線AE與平面ACF所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,平面,四邊形為正方形,四邊形為梯形,且,,,.
(1)求直線與平面所成角的正弦值;
(2)線段上是否存在點(diǎn),使得直線平面?若存在,求的值:若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)分別與兩個(gè)定點(diǎn),的連線的斜率之積為.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)過(guò)點(diǎn)的直線與軌跡交于,兩點(diǎn),判斷直線與以線段為直徑的圓的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知服從正態(tài)分布的隨機(jī)變量在區(qū)間,,內(nèi)取值的概率分別為0.6826,0.9544,0.9974.若某種袋裝大米的質(zhì)量(單位:)服從正態(tài)分布,任意選一袋這種大米,質(zhì)量在的概率為_.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知p:x∈R,x2+2x≥a,q:x2﹣4x+3≤0,r:(x﹣m)[x﹣(m+1)]≤0.
(1)若命題p的否定是假命題,求實(shí)數(shù)a的取值范圍;
(2)若q是r的必要條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某儀器經(jīng)過(guò)檢驗(yàn)合格才能出廠,初檢合格率為:若初檢不合格,則需要進(jìn)行調(diào)試,經(jīng)調(diào)試后再次對(duì)其進(jìn)行檢驗(yàn);若仍不合格,作為廢品處理,再檢合格率為.每臺(tái)儀器各項(xiàng)費(fèi)用如表:
項(xiàng)目 | 生產(chǎn)成本 | 檢驗(yàn)費(fèi)/次 | 調(diào)試費(fèi) | 出廠價(jià) |
金額(元) | 1000 | 100 | 200 | 3000 |
(Ⅰ)求每臺(tái)儀器能出廠的概率;
(Ⅱ)求生產(chǎn)一臺(tái)儀器所獲得的利潤(rùn)為1600元的概率(注:利潤(rùn)出廠價(jià)生產(chǎn)成本檢驗(yàn)費(fèi)調(diào)試費(fèi));
(Ⅲ)假設(shè)每臺(tái)儀器是否合格相互獨(dú)立,記為生產(chǎn)兩臺(tái)儀器所獲得的利潤(rùn),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的,縱坐標(biāo)縮短為原來(lái)的,得到曲線,在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程及直線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)為曲線上的任意一點(diǎn),求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com