2013年某市某區(qū)高考文科數(shù)學成績抽樣統(tǒng)計如下表:
(1)求出表中m、n、M、N的值,并根據(jù)表中所給數(shù)據(jù)在如圖所示給出的坐標系中畫出頻率分布直方圖;(縱坐標保留了小數(shù)點后四位小數(shù))
分組頻數(shù)頻率頻率/組距
[0,30)60.0060.0002
[30,60)820.0820.0027
[60,90)2560.2560.0085
[90,120)mn0.0145
[120,150]220N0.0073
合計M1
(2)若2013年北京市高考文科考生共有20000人,試估計全市文科數(shù)學成績在90分及90分以上的人數(shù);
(3)香港某大學對內(nèi)地進行自主招生,在參加面試的學生中,有6名學生數(shù)學成績在140分以上,其中男生有4名,要從6名學生中錄取2名學生,求其中恰有1名女生被錄取的概率.
考點:古典概型及其概率計算公式,頻率分布直方圖
專題:概率與統(tǒng)計
分析:(1)根據(jù)頻率公式求頻率、頻數(shù)及樣本容量,根據(jù)各小矩形的高作頻率分布直方圖;
(2)利用樣本來估計總體的思想,根據(jù)樣本中的比例估計總體中90分及90分以上的人數(shù);
(3)寫出所有基本事件,從中找出恰有1名女生的基本事件,利用基本事件個數(shù)比求概率.
解答: 解:(1)由統(tǒng)計表知:M=
6
0.006
=1000,
m=1000-6-82-256-220=436,
n=
436
1000
=0.436,N=
220
1000
=0.220.
頻率分布直方圖如圖:

(2)設(shè)全市文科數(shù)學成績在90及90分以上的人數(shù)為x,
1000
20000
=
656
x
,x=13120;
(3)設(shè)4名男生分別表示為A1、A2、A3、A4,
3名女生分別表示為B1、B2、,
則從6名學生中錄取2名學生的基本事件有:
(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),
(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),
(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2),共15種
設(shè)“選2人恰有1名女生”為事件A,有:
(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),
共8種,故6人中錄取2人恰有1人為女生的概率為
8
15
點評:本題考查了頻率分布直方圖的作法及利用頻率分布直方圖求頻數(shù),考查了古典概型的概率計算,利用列舉法寫出所有基本事件是古典概型求概率的常用方法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ln
1-x
1+x
是定義在(a,b)內(nèi)的奇函數(shù),則b2+b+a的取值范圍為( 。
A、[0,1)
B、(0,1)
C、(0,1]
D、[0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別BB1,CD的中點.
(1)求證:AE⊥平面A1FD1;
(2)已知G是靠近C1的A1C1的四等分點,求證:EG∥平面A1FD1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點P(0,1),離心率為
2
2
,直線l:y=kx+m交橢圓于不同于點P的兩點A、B.
(1)求橢圓的方程;
(2)若以AB為直徑的圓經(jīng)過點P,求證:直線l過定點,并求出該點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線與橢圓有共同的焦點F1(0,-5),F(xiàn)2(0,5),點P(3,4)是雙曲線的漸近線與橢圓的一個交點,求漸近線與橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{log4an}是等差數(shù)列,log4a2=
3
2
,a1+a3=20

(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{log4an}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(sinx,cosx),
n
=(cosx,
3
cosx),函數(shù)f(x)=
m
n
-
3
2

(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)如果△ABC的三邊a,b,c所對的角分別為A、B、C,且滿足b2+c2=a2+
3
bc,求f(A)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=
1
5
,an+an+1=
6
5n+1
(n∈N+
(1)證明:{5nan-1}是常數(shù)列;
(2)設(shè)xn=(2n-1)•10nan,求{xn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個袋子中裝有3個紅球,2個黃球,1個黑球,從中任取三個球.且規(guī)定:取出一個紅球得1分,取出一個黃球2分,取出一個黑球3分.
(Ⅰ)求取出的三個球中恰有兩個球顏色相同的概率;
(Ⅱ)求得分為5分的概率.

查看答案和解析>>

同步練習冊答案