如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點(diǎn)A在PD上的射影為點(diǎn)G,點(diǎn)E在AB上,平面PEC⊥平面PDC.

(1)求證:AG∥平面PEC;

(2)求AE的長(zhǎng);

(3)求二面角E—PC—A的正弦值.(本題滿(mǎn)分14分)

 

【答案】

(1)見(jiàn)解析。(2)  (3)。

【解析】       

試題分析:解(1)證明:∵CD⊥AD,CD⊥PA

∴CD⊥平面PAD   ∴CD⊥AG,

又PD⊥AG

∴AG⊥平面PCD  ……………………2分

作EF⊥PC于F,因面PEC⊥面PCD

∴EF⊥平面PCD,

∴EF∥AG

又AG面PEC,EF面PEC,

∴AG∥平面PEC  ……………………4分

(2)由(Ⅰ)知A、E、F、G四點(diǎn)共面,又AE∥CD,

∴AE∥平面PCD。

∴AE∥GF。

∴四邊形AEFG為平行四邊形,∴AE=GF。    ……………………………5分

∵PA=3,AB=4,∴PD=5,AG=,

又PA2=PG•PD,∴PG     ………………………………………………7分

,∴,∴  ………………………9分

(3)過(guò)E作EO⊥AC于點(diǎn)O,易知EO⊥平面PAC,

又EF⊥PC,∴OF⊥PC∴∠EFO即為二面角E—PC—A的平面角  …………11分

,

又EF=AG

              …………………14分

點(diǎn)評(píng):二面角的求法是立體幾何中的一個(gè)難點(diǎn)。我們解決此類(lèi)問(wèn)題常用的方法有兩種:①綜合法,綜合法的一般步驟是:一作二說(shuō)三求。②向量法,運(yùn)用向量法求二面角應(yīng)注意的是計(jì)算。很多同學(xué)都會(huì)應(yīng)用向量法求二面角,但結(jié)果往往求不對(duì),出現(xiàn)的問(wèn)題就是計(jì)算錯(cuò)誤。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點(diǎn)A在PD上的射影為點(diǎn)G,點(diǎn)E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長(zhǎng);
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長(zhǎng)為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點(diǎn)
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案