a,b∈R,已知直線x+a2y+1=0與(a2+1)x-2by+3=0互相垂直,則|ab|的最小值為( )
A.1
B.
C.
D.2
【答案】分析:由垂直可得即b=,故|ab|=||,下由基本不等式可得答案.
解答:解:由題意可得:直線x+a2y+1=0與(a2+1)x-2by+3=0互相垂直,
故1×(a2+1)+a2(-2b)=0,即b=,
故|ab|=|a|=||≥2=1
故選A
點評:本題考查直線垂直的充要條件,涉及基本不等式的應用,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

a,b∈R,已知直線x+a2y+1=0與(a2+1)x-2by+3=0互相垂直,則|ab|的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a,b∈R,已知直線x+a2y+1=0與(a2+1)x-2by+3=0互相垂直,則|ab|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

a,b∈R,已知直線x+a2y+1=0與(a2+1)x-2by+3=0互相垂直,則|ab|的最小值為


  1. A.
    1
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    2

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北省荊州中學高二(上)期中數(shù)學試卷(理科)(解析版) 題型:選擇題

a,b∈R,已知直線x+a2y+1=0與(a2+1)x-2by+3=0互相垂直,則|ab|的最小值為( )
A.1
B.
C.
D.2

查看答案和解析>>

同步練習冊答案