已知圓C1:(x+1)2+y2=1,圓C2:(x-1)2+(y-4)2=1,動圓C平分C1,C2的周長,求動圓C圓心的軌跡方程.
考點:軌跡方程
專題:計算題,直線與圓
分析:設圓C:(x-a)2+(y-b)2=r2,把兩圓的方程相減即得兩圓公共弦所在直線方程,由題意知直線經過圓的圓心,即可得到動圓C圓心的軌跡方程.
解答: 解:設圓C:(x-a)2+(y-b)2=r2,
與圓C1:(x+1)2+y2=1相減可得兩圓公共弦所在直線方程為2x+1+2ax+a2+2by+b2=0,
代入(-1,0)可得-1-2a+a2+b2=0①;
與圓C2:(x-1)2+(y-4)2=1相減可得兩圓公共弦所在直線方程為-2x+1+2ax+a2-8y+16+2by+b2=0,
代入(1,4)可得-17+2a+a2+b2+8b=0②,
由①②可得4a+8b-16=0,即動圓C圓心的軌跡方程為x+2y-4=0.
點評:本題主要考查兩圓的位置關系及其判定,求點的軌跡方程以及求圓的標準方程,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

空間四邊形ABCD的一組對邊BC、AD的長分別為6,4,BC⊥AD,則連接對角線AC,BD中點的線段長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

e1
,
e2
不共線,
a
=
e1
+
e2
b
=3
e1
-3
e2
,
a
b
是否共線?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(1+x)-
ax
x+1
(a>0).(注:[ln(1+x)]′=
1
1+x

(1)若x=1是函數(shù)f(x)的一個極值點,求a的值;
(2)若f(x)≥0在[0,+∞)上恒成立,求a的取值范圍;
(3)證明:(
2014
2015
2015
1
e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某省級示范高中2015年有向甲、乙、丙三所大學推薦保送生的名額,根據這三所大學保送生推薦的條件,該校共有四名學生符合推薦條件學校按照保送生推選的程序,首先由這四名學生各自自主申請,每位申請人只能申請一所大學的保送名額,已知這四名學生申請其中任一所大學都是等可能的,而且他們在申請時互不影響.
(1)求恰有兩位學生都申請甲這所大學的概率;
(2)記這四位學生所申請的大學的個數(shù)為ξ,求ξ的分布列和數(shù)學期望;
(3)對于(2)中的ξ,設“函數(shù)f(x)=3sin
x+ξ
2
π,x∈R是偶函數(shù)”為事件D,求事件D發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在正方體ABCD-A′B′C′D′中,E是棱BB′中點,G是DD′中點,F(xiàn)是BC上一點且FB=
1
4
BC,則GB與EF所成的角為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在一次無放回的抽獎活動中,已知箱中裝有除顏色不同外,形狀、大小、質地均相同的2個紅球、2個黃球、1個藍球,且混淆均勻,規(guī)定:取出一個紅球得3分,取出一個黃球得2分,取出一個藍球得1分.現(xiàn)從箱中任取2個球.
(1)求取出的球1紅1黃的概率;
(2)求得分之和為4分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α,β∈[-
π
2
,
π
2
]
,且αsinα-βsinβ>0,則下列結論正確的是(  )
A、α3>β3
B、α+β>0
C、|α|<|β|
D、|α|>|β|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于非空數(shù)集A,若實數(shù)M滿足對任意的a∈A恒有a≤M,則M為A的上界;若A的所有上界中存在最小值,則稱此最小值為A的上確界,那么下列函數(shù)的值域中具有上確界的是( 。
A、y=
x+2
B、y=(-
3
,
2
)
C、y=
1
2
x
D、y=lnx

查看答案和解析>>

同步練習冊答案