10.函數(shù)f(x)=2arccos(2-x)的值域是[$\frac{π}{3}$,2π],求此函數(shù)的定義域.

分析 由條件利用反余弦函數(shù)的定義和性質(zhì),求得此函數(shù)的定義域.

解答 解:∵函數(shù)f(x)=2arccos(2-x)的值域是[$\frac{π}{3}$,2π],∴arccos(2-x)的值域是[$\frac{π}{6}$,π],
-1≤2-x≤$\frac{\sqrt{3}}{2}$,求得$\frac{4-\sqrt{3}}{2}$≤x≤3,故函數(shù)的定義域?yàn)閇$\frac{4-\sqrt{3}}{2}$,3].

點(diǎn)評(píng) 本題主要考查反余弦函數(shù)的定義和性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.雙曲線中,焦點(diǎn)為F1(-3,0),F(xiàn)2(3,0),實(shí)半軸a=2,則雙曲線的方程是( 。
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1B.$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{5}$=1C.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1D.$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={-2,-1,1,2,4},B={y|y=log2|x|-1,x∈A},則A∩B=( 。
A.{-2,-1,1}B.{-1,1,2}C.{-1,1}D.{-2,-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.給出如表中的算法語句,若輸入的x的值為12,則輸出的y為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}滿足an+1-2an=0,且a1=3.
(1)寫出數(shù)列的通項(xiàng)公式;
(2)48是數(shù)列中的項(xiàng)嗎?若是,是第幾項(xiàng),若不是,說明理由;
(3)若bn=2an-1,數(shù)列{bn}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2x+3,-3≤x<1}\\{{x}^{2}-2,1≤x<3}\\{{e}^{1-x},3≤x≤5}\end{array}\right.$,求:
(1)f(-2),f(0),f(f(1)),f(2);
(2)函數(shù)f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知正整數(shù)a,b,c(a>b>c)為△ABC的三邊長(zhǎng),且{$\frac{{2}^{a}}{15}$}={$\frac{{2}^}{15}$}={$\frac{{2}^{c}}{15}$},求a+b+c的最小值,其中{m}表示m的小數(shù)部分,即{m}=m-[m]([m]表示不超過m的最大整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)f(x)=ax3+3ax2+1,g(x)=ex(e=2.71828…是自然對(duì)數(shù)的底數(shù)),f′(x)是f(x)的導(dǎo)數(shù).
(Ⅰ)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a<0時(shí),若函數(shù)f′(x)與g(x)的圖象都與直線l相切于點(diǎn)P(x0,y0),求實(shí)數(shù)x0的值;
(Ⅲ)求證:當(dāng)a≤-1時(shí),函數(shù)f(x)與g(x)的圖象在(-2,0)上有公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知過點(diǎn)M(1,1)的直線l與圓(x+1)2+(y-2)2=5相切,且與直線ax+y-1=0垂直,則實(shí)數(shù)a=$\frac{1}{2}$;直線l的方程為2x-y-1=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案