設關于x的一元二次方程數(shù)學公式;
(1)若m是從0,1,2,3四個數(shù)中任取的一個數(shù),n是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若m是從區(qū)間[0,3]內(nèi)任取的一個數(shù),n是從區(qū)間[0,2]內(nèi)任取的一個數(shù),求上述方程有實根的概率.

解:(1)設事件A為“方程x2-mx+=0有實根”.
當m≥0,n≥0時,方程x2-mx+=0有實根的充要條件為m≥n(4分)
若m是從0,1,2,3四個數(shù)中任取的一個數(shù),n是從0,1,2三個數(shù)中任取的一個數(shù)包含的基本事件共12個:
(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一個數(shù)表示m的取值,第二個數(shù)表示n的取值.
事件A中包含9個基本事件,
事件A發(fā)生的概率為P(A)=. (9分)
(2)試驗的全部結(jié)果所構成的區(qū)域為{(m,n)|0≤m≤3,0≤n≤2}.
構成事件A的區(qū)域為{(m,n)|0≤m≤3,0≤n≤2,m≥n}.
由幾何概型的概率公式得到
所以所求的概率為P(A)=(14分)
分析:(1)本題是一個古典概型,由分步計數(shù)原理知基本事件共12個,當m≥0,n≥0時,方程x2-mx+=0有實根的充要條件為m≥n,滿足條件的事件中包含9個基本事件,由古典概型公式得到結(jié)果.
(2)本題是一個幾何概型,試驗的全部約束所構成的區(qū)域為{(m,n)|0≤m≤3,0≤n≤2}.
構成事件A的區(qū)域為{(m,n)|0≤m≤3,0≤n≤2,m≥n}.根據(jù)幾何概型公式得到結(jié)果.
點評:題考查幾何概型和古典概型,放在一起的目的是把兩種概型加以比較,幾何概型和古典概型是高中必修中學習的高考時常以選擇和填空出現(xiàn),有時文科會考這種類型的解答題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設關于x的一元二次方程2x2-tx-2=0的兩個根為α、β(α<β).
(1)若x1、x2為區(qū)間[α、β]上的兩個不同的點,求證:4x1x2-t(x1+x2)-4<0.
(2)設f(x)=
4x-tx2+1
,f(x)在區(qū)間[α,β]上的最大值和最小值分別為fmax和fmin,g(t)=fmax-fmin,求g(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設關于x的一元二次方程ax2+bx+1=0
(Ⅰ)設a和b分別是先后拋擲一枚骰子得到的點數(shù),求上述方程沒有實根的概率;
(Ⅱ)若a是從區(qū)間(0,3)內(nèi)任取的一個數(shù),b=2,求上述方程沒有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設關于x的一元二次方程mx2+(2m-1)x+(m+1)=0的兩個實根為tanα與tanβ,求tan(α+β)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年安徽省滁州市天長市銅城中學高二(上)期中數(shù)學試卷(解析版) 題型:解答題

設關于x的一元二次方程;
(1)若m是從0,1,2,3四個數(shù)中任取的一個數(shù),n是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若m是從區(qū)間[0,3]內(nèi)任取的一個數(shù),n是從區(qū)間[0,2]內(nèi)任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

同步練習冊答案