11.函數(shù)f(x)=ex-4x的遞減區(qū)間為( 。
A.(0,ln4)B.(0,4)C.(-∞,ln4)D.(ln4,+∞)

分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可.

解答 解:f′(x)=ex-4,
令f′(x)<0,解得:x<ln4,
故函數(shù)在(-∞,ln4)遞減;
故選:C.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知i為虛數(shù)單位,若復(fù)數(shù)$z=\frac{1-ti}{1+i}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第四象限,則t的取值范圍為( 。
A.[-1,1]B.(-1,1)C.(-∞,-1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.某校開(kāi)設(shè)A類(lèi)選修課3門(mén)和B類(lèi)選修課4門(mén),一位同學(xué)從中任選3門(mén),則兩類(lèi)課程都有選的概率為( 。
A.$\frac{6}{7}$B.$\frac{5}{7}$C.$\frac{3}{7}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知變量x,y滿足約束條件$\left\{\begin{array}{l}y≤x\\ x+y≥1\\ y≥3x-6\end{array}\right.$,則x2+y2+2(x-y)的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在直角坐標(biāo)系xOy中,橢圓C的方程為$\frac{x^2}{4}+{y^2}=1$,若以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線E的極坐標(biāo)方程為ρ2-8ρsinθ+15=0.
(1)求曲線E的普通方程和橢圓C的參數(shù)方程;
(2)已知A,B分別為兩曲線上的動(dòng)點(diǎn),求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=x3+x.
(1)求函數(shù)g(x)=f(x)-4x的單調(diào)區(qū)間;
(2)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線l與坐標(biāo)軸圍成的三角形的面積;
(3)若函數(shù)F(x)=f(x)-ax2在(0,3]上遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)y=2$\sqrt{x}+\sqrt{1-x}$的最大值為(  )
A.2B.3C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.?dāng)?shù)列{an}滿足a2=$\frac{3}{4}$,an-anan+1-1=0,Tn表示{an}前n項(xiàng)之積,則T2017=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知$\overrightarrow{a}$=(8,2),$\overrightarrow$=(-3,m),且$\overrightarrow{a}$∥$\overrightarrow$,則m=-$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案