【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個(gè)銷售季度內(nèi),每售出1t該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每1t虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場(chǎng)需求量的頻率分布直圖,如右圖所示.經(jīng)銷商為下一個(gè)銷售季度購進(jìn)了130t該農(nóng)產(chǎn)品.以(單位:t,100≤≤150)表示下一個(gè)銷售季度內(nèi)的市場(chǎng)需求量,T(單位:元)表示下一個(gè)銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.
(Ⅰ)將T表示為的函數(shù);
(Ⅱ)根據(jù)直方圖估計(jì)利潤T不少于57000元的概率.
【答案】(Ⅰ)(Ⅱ)0.7
【解析】
試題分析:(I)由題意先分段寫出,當(dāng)X∈[100,130)時(shí),當(dāng)X∈[130,150)時(shí),和利潤值,最后利用分段函數(shù)的形式進(jìn)行綜合即可.
(II)由(I)知,利潤T不少于57000元,當(dāng)且僅當(dāng)120≤X≤150.再由直方圖知需求量X∈[120,150]的頻率為0.7,利用樣本估計(jì)總體的方法得出下一個(gè)銷售季度的利潤T不少于57000元的概率的估計(jì)值.
解:(I)由題意得,當(dāng)X∈[100,130)時(shí),T=500X﹣300(130﹣X)=800X﹣39000,
當(dāng)X∈[130,150]時(shí),T=500×130=65000,
∴T=.
(II)由(I)知,利潤T不少于57000元,當(dāng)且僅當(dāng)120≤X≤150.
由直方圖知需求量X∈[120,150]的頻率為0.7,
所以下一個(gè)銷售季度的利潤T不少于57000元的概率的估計(jì)值為0.7.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用a代表紅球,b代表藍(lán)球,c代表黑球,由加法原理及乘法原理,從1個(gè)紅球和1個(gè)藍(lán)球中取出若干個(gè)球的所有取法可由(1+a)(1+b)的展開式1+a+b+ab表示出來,如:“1”表示一個(gè)球都不取、“a”表示取出一個(gè)紅球,而“ab”則表示把紅球和藍(lán)球都取出來.以此類推,下列各式中,其展開式可用來表示從5個(gè)無區(qū)別的紅球、5個(gè)無區(qū)別的藍(lán)球、5個(gè)有區(qū)別的黑球中取出若干個(gè)球,且所有的藍(lán)球都取出或都不取出的所有取法的是( )
A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5
B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5
C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)
D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地級(jí)市共有中學(xué)生,其中有學(xué)生在年享受了“國家精準(zhǔn)扶貧”政策,在享受“國家精準(zhǔn)扶貧”政策的學(xué)生中困難程度分為三個(gè)等次:一般困難、很困難、特別困難,且人數(shù)之比為,為進(jìn)一步幫助這些學(xué)生,當(dāng)?shù)厥姓O(shè)立“專項(xiàng)教育基金”,對(duì)這三個(gè)等次的困難學(xué)生每年每人分別補(bǔ)助元、元、元.經(jīng)濟(jì)學(xué)家調(diào)查發(fā)現(xiàn),當(dāng)?shù)厝司芍淠晔杖胼^上一年每增加,一般困難的學(xué)生中有會(huì)脫貧,脫貧后將不再享受“精準(zhǔn)扶貧”政策,很困難的學(xué)生有轉(zhuǎn)為一般困難學(xué)生,特別困難的學(xué)生中有轉(zhuǎn)為很困難學(xué)生.現(xiàn)統(tǒng)計(jì)了該地級(jí)市年到年共年的人均可支配年收入,對(duì)數(shù)據(jù)初步處理后得到了如圖所示的散點(diǎn)圖和表中統(tǒng)計(jì)量的值,其中年份取時(shí)代表年,取時(shí)代表年,……依此類推,且與(單位:萬元)近似滿足關(guān)系式.(年至年該市中學(xué)生人數(shù)大致保持不變)
(1)估計(jì)該市年人均可支配年收入為多少萬元?
(2)試問該市年的“專項(xiàng)教育基金”的財(cái)政預(yù)算大約為多少萬元?
附:對(duì)于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),,…,,其回歸直線方程的斜率和截距的最小二乘估計(jì)分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面平面,四邊形是邊長為4的正方形,,是的中點(diǎn).
(1)在圖中作出并指明平面和平面的交線;
(2)求證:;
(3)當(dāng)時(shí),求與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人進(jìn)行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為 ,乙獲勝的概率為 ,各局比賽結(jié)果相互獨(dú)立.
(1)求甲在4局以內(nèi)(含4局)贏得比賽的概率;
(2)記X為比賽決勝出勝負(fù)時(shí)的總局?jǐn)?shù),求X的分布列和均值(數(shù)學(xué)期望).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小正周期是,且在區(qū)間上單調(diào)遞減.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程
在上有實(shí)數(shù)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】廈門市從2003年起每年都舉行國際馬拉松比賽,每年馬拉松比賽期間,都會(huì)吸引許多外地游客到廈門旅游,這將極大地推進(jìn)廈門旅游業(yè)的發(fā)展,旅游部門將近六年馬拉松比賽期間外地游客數(shù)量統(tǒng)計(jì)如下表:
年份 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 |
比賽年份編號(hào) | ||||||
外地游客人數(shù)(萬人) |
(1)若用線性回歸模型擬合與的關(guān)系,求關(guān)于的線性回歸方程;(精確到)
(2)若用對(duì)數(shù)回歸模型擬合與的關(guān)系,可得回歸方程,且相關(guān)指數(shù),請(qǐng)用相關(guān)指數(shù)說明選擇哪個(gè)模型更合適.(精確到)
參考數(shù)據(jù):,,,;
參考公式:回歸方程中,,;相關(guān)指數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若對(duì)成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P(0,﹣1)是橢圓C1: + =1(a>b>0)的一個(gè)頂點(diǎn),C1的長軸是圓C2:x2+y2=4的直徑,l1 , l2是過點(diǎn)P且互相垂直的兩條直線,其中l(wèi)1交圓C2于A、B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D.
(1)求橢圓C1的方程;
(2)求△ABD面積的最大值時(shí)直線l1的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com