已知函數(shù) ,若對任意的,不等式恒成立,則實數(shù)的取值范圍為 .
科目:高中數(shù)學(xué) 來源: 題型:填空題
若二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象和直線y=x無交點,現(xiàn)有下列結(jié)論:①方程f(f(x))=x一定沒有實數(shù)根;
②若a>0,則不等式f(f(x))>x對一切實數(shù)x都成立;
③若a<0,則必存在實數(shù)x0,使f(f(x0))>x0;
④若a+b+c=0,則不等式f(f(x))<x對一切實數(shù)都成立;
⑤函數(shù)g(x)=ax2-bx+c的圖象與直線y=-x也一定沒有交點.
其中正確的結(jié)論是 (寫出所有正確結(jié)論的編號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱函數(shù)f(x)為M上的l高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=x是R上的1高調(diào)函數(shù);
②函數(shù)f(x)=sin 2x為R上的π高調(diào)函數(shù);
③如果定義域為[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實數(shù)m的取值范圍是[2,+∞).
其中正確的命題是________.(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
若函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈[-1,1)時,f(x)=|x|,則函數(shù)y=f(x)的圖象與函數(shù)y=log4|x|的圖象的交點的個數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
若a>1,設(shè)函數(shù)f(x)=ax+x-4的零點為m,函數(shù)g(x)=logax+x-4的零點為n,則+的最小值為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com