為了得到函數(shù)y=2sin(
x
3
+
π
6
),x∈R的圖象,只需把函數(shù)y=2sinx,x∈R的圖象上所有的點(  )
A.向右平移
π
6
個單位長度,再把所得各點的橫坐標伸長到原來的3倍(縱坐標不變)
B.向左平移
π
6
個單位長度,再把所得各點的橫坐標伸長到原來的3倍(縱坐標不變)
C.向右平移
π
6
個單位長度,再把所得各點的橫坐標縮短到原來的
1
3
倍(縱坐標不變)
D.向左平移
π
6
個單位長度,再把所得各點的橫坐標縮短到原來的
1
3
倍(縱坐標不變)
把函數(shù)y=2sinx,x∈R的圖象上所有的點向左平移
π
6
個單位長度,可得函數(shù)y=2sin(x+
π
6
)的圖象,
再把所得各點的橫坐標伸長到原來的3倍(縱坐標不變),可得函數(shù)y=2sin(
x
3
+
π
6
),x∈R的圖象,
故選:B.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知,, ,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

要得到函數(shù)y=sin2x的圖象,可由函數(shù)y=sin(2x-
π
3
)
的圖象按下列哪種變換而得到( 。
A.向左平移
π
6
個單位
B.向左平移
π
3
個單位
C.向右平移
π
6
個單位
D.向右平移
π
3
個單位

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)圖象的一部分如圖所示:
(1)求f(x)的解析式;
(2)寫出f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

函數(shù)f1(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的一段圖象過點(0,1),如圖所示.
(1)求函數(shù)f1(x)的表達式;
(2)將函數(shù)y=f1(x)的圖象向右平移個單位,得函數(shù)y=f2(x)的圖象,求y=f2(x)的最大值,并求出此時自變量x的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=Asin(ωx+
π
6
)(x∈R,A>0,ω>0)的最小正周期為T=6π,且f(2π)=2
(1)求ω和A的值;
(2)設α,β∈[0,
π
2
],f(3α+π)=
16
5
,f(3β+
2
)=-
20
13
;求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設a=(sin56°-cos56°), b=cos50°·cos128°+cos40°·cos38°,
c= (cos80°-2cos250°+1),則a,b,c的大小關(guān)系是  (    ).
A.a(chǎn)>b>cB.b>a>cC.c>a>bD.a(chǎn)>c>b

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知為銳角,且有,
的值是           .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知
(1) 求的值.    (2)求 的值.  

查看答案和解析>>

同步練習冊答案