【題目】已知函數(shù).
(1)求函數(shù)的定義域D,并判斷的奇偶性;
(2)如果當(dāng)時(shí),的值域是,求a的值;
(3)對(duì)任意的m,,是否存在,使得,若存在,求出t,若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)定義域?yàn)?/span>,奇函數(shù);(2);(3)存在,,詳見(jiàn)解析
【解析】
(1)根據(jù)真數(shù)大于零可得到不等式求得定義域;由對(duì)數(shù)運(yùn)算法則可證得,從而可知函數(shù)為奇函數(shù);
(2)根據(jù)復(fù)合函數(shù)單調(diào)性可證得為定義域內(nèi)的增函數(shù),從而得到,構(gòu)造出關(guān)于的方程,解方程求得的值;
(3)假設(shè)存在后,可根據(jù)對(duì)數(shù)運(yùn)算法則得到;采用作差法驗(yàn)證出,從而可證得成立,并得到此時(shí).
(1)由函數(shù)有意義可得:,解得: 的定義域?yàn)?/span>
是上的奇函數(shù)
(2)
為上的減函數(shù),為上的減函數(shù)
在上單調(diào)遞增 ,即
,解得:(舍)或
(3),
假設(shè)存在,使得,則:
解得:
,
又
對(duì)任意的,存在滿(mǎn)足,此時(shí)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖(1)為東方體育中心,其設(shè)計(jì)方案?jìng)?cè)面的外輪廓線(xiàn)如圖(2)所示;曲線(xiàn)是以點(diǎn)為圓心的圓的一部分,其中,曲線(xiàn)是拋物線(xiàn)的一部分;且恰好等于圓的半徑,與圓相切且.
(1)若要求米,米,求與的值;
(2)當(dāng)時(shí),若要求不超過(guò)45米,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將數(shù)列的前項(xiàng)分成兩部分,且兩部分的項(xiàng)數(shù)分別是,若兩部分和相等,則稱(chēng)數(shù)列的前項(xiàng)的和能夠進(jìn)行等和分割.
(1)若,試寫(xiě)出數(shù)列的前項(xiàng)和所有等和分割;
(2)求證:等差數(shù)列的前項(xiàng)的和能夠進(jìn)行等和分割;
(3)若數(shù)列的通項(xiàng)公式為:,且數(shù)列的前項(xiàng)的和能夠進(jìn)行等和分割,求所有滿(mǎn)足條件的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列A: , ,… ().如果對(duì)小于()的每個(gè)正整數(shù)都有 < ,則稱(chēng)是數(shù)列A的一個(gè)“G時(shí)刻”.記“是數(shù)列A的所有“G時(shí)刻”組成的集合.
(1)對(duì)數(shù)列A:-2,2,-1,1,3,寫(xiě)出的所有元素;
(2)證明:若數(shù)列A中存在使得>,則 ;
(3)證明:若數(shù)列A滿(mǎn)足- ≤1(n=2,3, …,N),則的元素個(gè)數(shù)不小于 -.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列和,記.
(1)若,求;
(2)若,求關(guān)于m的表達(dá)式;
(3)若數(shù)列和均是項(xiàng)數(shù)為項(xiàng)的有窮數(shù)列.,現(xiàn)將和中的項(xiàng)一一取出,并按照從小到大的順序排成一列,得到.求證:對(duì)于給定的,的所有可能取值的奇偶性相同.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電視臺(tái)為宣傳本市,隨機(jī)對(duì)本市內(nèi)歲的人群抽取了人,回答問(wèn)題“本市內(nèi)著名旅游景點(diǎn)有哪些” ,統(tǒng)計(jì)結(jié)果如圖表所示.
組號(hào) | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的頻率 |
第1組 | [15,25) | a | 0.5 |
第2組 | [25,35) | 18 | x |
第3組 | [35,45) | b | 0.9 |
第4組 | [45,55) | 9 | 0.36 |
第5組 | [55,65] | 3 | y |
(1)分別求出的值;
(2)根據(jù)頻率分布直方圖估計(jì)這組數(shù)據(jù)的中位數(shù)(保留小數(shù)點(diǎn)后兩位)和平均數(shù);
(3)若第1組回答正確的人員中,有2名女性,其余為男性,現(xiàn)從中隨機(jī)抽取2人,求至少抽中1名女性的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于實(shí)數(shù)x,符號(hào)[x]表示不超過(guò)x的最大整數(shù),例如[π]=3,[﹣1.08]=﹣2,定義函數(shù)f(x)=x﹣[x],則下列命題中正確的是
①函數(shù)f(x)的最大值為1; ②函數(shù)f(x)的最小值為0;
③方程有無(wú)數(shù)個(gè)根; ④函數(shù)f(x)是增函數(shù).
A. ②③ B. ①②③ C. ② D. ③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)C的參數(shù)方程為(α為參數(shù)),將C上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的3倍,得曲線(xiàn)C1.以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求C1的極坐標(biāo)方程
(2)設(shè)M,N為C1上兩點(diǎn),若OM⊥ON,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)十人各拿一只水桶,同到水龍頭前打水,設(shè)水龍頭注滿(mǎn)第i(i=1,2,…,10)個(gè)人的水桶需Ti分鐘,假設(shè)Ti各不相同,當(dāng)水龍頭只有一個(gè)可用時(shí),應(yīng)如何安排他(她)們的接水次序,使他(她)們的總的花費(fèi)時(shí)間(包括等待時(shí)間和自己接水所花費(fèi)的時(shí)間)最少( )
A. 從Ti中最大的開(kāi)始,按由大到小的順序排隊(duì)
B. 從Ti中最小的開(kāi)始,按由小到大的順序排隊(duì)
C. 從靠近Ti平均數(shù)的一個(gè)開(kāi)始,依次按取一個(gè)小的取一個(gè)大的的擺動(dòng)順序排隊(duì)
D. 任意順序排隊(duì)接水的總時(shí)間都不變
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com