14.拋物線x=4y2的焦點(diǎn)坐標(biāo)是  ( 。
A.($\frac{1}{16}$,0)B.(1,0)C.(0,$\frac{1}{16}$)D.(0,1 )

分析 化簡拋物線方程為標(biāo)準(zhǔn)方程,然后求解即可.

解答 解:拋物線x=4y2的標(biāo)準(zhǔn)方程為:y2=$\frac{1}{4}$x它的焦點(diǎn)坐標(biāo)是($\frac{1}{16}$,0).
故選:A.

點(diǎn)評(píng) 本題考查拋物線的簡單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知等差數(shù)列{an}中,a4=14,前10項(xiàng)和S10=185.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè){bn}是首項(xiàng)為1,公比為2的等比數(shù)列,求數(shù)列{an+bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在直角坐標(biāo)標(biāo)系xoy中,已知曲線${C_1}:\left\{{\begin{array}{l}{x=1+cosα}\\{y={{sin}^2}α-\frac{9}{4}}\end{array}}\right.$(α為參數(shù),α∈R),在以原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸的極坐標(biāo)系中(取相同的長度單位),曲線${C_2}:ρsin(θ+\frac{π}{4})$=$-\frac{{\sqrt{2}}}{2}$,曲線C3:ρ=2cosθ.
(Ⅰ)求曲線C1與C2的交點(diǎn)M的直角坐標(biāo);
(Ⅱ)設(shè)A,B分別為曲線C2,C3上的動(dòng)點(diǎn),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知不等式$\frac{{{2^x}+1}}{3}>1-\frac{{{2^x}-1}}{2}$的解集為M,則下列說法正確的是( 。
A.{0}⊆MB.M=∅C.-1∈MD.2∈M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=sinx•cosx+{sin^2}x-\frac{1}{2}$.
(1)求函數(shù)f(x)的最小正周期以及單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)縮短到原來的$\frac{1}{2}$,把所得圖象向左平移$\frac{π}{4}$個(gè)單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在$(-\frac{π}{4},0)$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,△PAB的頂點(diǎn)A、B為定點(diǎn),P為動(dòng)點(diǎn),其內(nèi)切圓O1與AB、PA、PB分別相切于點(diǎn)C、E、F,且$AB=2\sqrt{3}$,||AC|-|BC||=2.
(1)求||PA|-|PB||的值;
(2)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求動(dòng)點(diǎn)P的軌跡W的方程;
(3)設(shè)l是既不與AB平行也不與AB垂直的直線,線段AB的中點(diǎn)O到直線l的距離為 $\sqrt{2}$,直線l與曲線W相交于不同的兩點(diǎn)G、H,點(diǎn)M滿足$2\overrightarrow{OM}=\overrightarrow{OG}+\overrightarrow{OH}$,證明:$2|\overrightarrow{OM}|=|\overrightarrow{GH}|$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)$y=\sqrt{{{log}_2}(x-3)}$的定義域是( 。
A.(3,+∞)B.(3,4]C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)F1,F(xiàn)2是橢圓$\frac{x^2}{a^2}+\frac{y^2}{25}=1(a<5)$的兩個(gè)焦點(diǎn),且|F1F2|=8,弦AB過點(diǎn)F2,則△ABF1的周長為( 。
A.12B.20C.2$\sqrt{41}$D.4$\sqrt{41}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x2-1)=logm$\frac{x^2}{{2-{x^2}}}$.
(1)求f(x)的解析式并判斷f(x)的奇偶性;
(2)解關(guān)于 x的不等式 f(x)≤0.

查看答案和解析>>

同步練習(xí)冊(cè)答案