下面所給向量共線的是

[  ]

A.(1,5),(5,-5)

B.

C.(1,0),(0,1)

D.

答案:B
解析:

將所給坐標代入公式,看“x1y2-x2y1=0”是否成立即可.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:學習高手必修四數(shù)學蘇教版 蘇教版 題型:044

材料:采訪零向量

  W:你好!零向量.我是《數(shù)學天地》的一名記者,為了讓在校的高中生更好了解你,能不能對你進行一次采訪呢?

  零向量:當然可以,我們向量王國隨時恭候大家的光臨,很樂意接受你的采訪,讓高中生朋友更加了解我,更好地為他們服務.

  W:好的,那就開始吧!你的名字有什么特殊的含義嗎?

  零向量:零向量就是長度為零的向量,它與數(shù)字0有著密切的聯(lián)系,所以用0來表示我.

  W:你與其他向量有什么共同之處呢?

  零向量:既然我是向量王國的一個成員,就具有向量的基本性質(zhì),如既有大小又有方向,在進行加、減法運算時滿足交換律和結合律,還定義了與實數(shù)的積.

  W:你有哪些值得驕傲的特殊榮耀呢?

  零向量:首先,我的方向是不定的,可以與任意的向量平行.其次,我還有其他一些向量所沒有的特殊待遇:如我的相反向量仍是零向量;在向量的線性運算中,我與實數(shù)0很有相似之處.

  W:你有如此多的榮耀,那么是否還有煩惱之事呢?

  零向量:當然有了,在向量王國還有許多“權利和義務”卻大有把我排斥在外之意,如平行向量的定義,向量共線定理,兩向量夾角的定義都對我進行了限制.所有這些確實給一些高中生帶來了很多苦惱,在此我向大家真誠地說一聲:對不起,這不是我的錯.但我還是很高興有這次機會與大家見面.

  W:OK!采訪就到這里吧,非常感謝你的合作,再見!

  零向量:Bye!

閱讀上面的材料回答下面問題.

應用零向量時應注意哪些問題?

查看答案和解析>>

同步練習冊答案