【題目】拋物線的焦點(diǎn)為F,過點(diǎn)F的直線交拋物線于A,B兩點(diǎn).

1)若,求直線AB的斜率;

2)設(shè)點(diǎn)M在線段AB上運(yùn)動(dòng),原點(diǎn)O關(guān)于點(diǎn)M的對(duì)稱點(diǎn)為C,求四邊形OACB面積的最小值.

【答案】1;(2)面積最小值是4

【解析】

試題本題主要考查拋物線的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線與圓錐曲線的位置關(guān)系、直線的斜率等基礎(chǔ)知識(shí),考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問,依題意F1,0),設(shè)直線AB的方程為.將直線AB的方程與拋物線的方程聯(lián)立,得,由此能夠求出直線AB的斜率;第二問,由點(diǎn)C與原點(diǎn)O關(guān)于點(diǎn)M對(duì)稱,得M是線段OC的中點(diǎn),從而點(diǎn)O與點(diǎn)C到直線AB的距離相等,所以四邊形OACB的面積等于,由此能求出四邊形OACB的面積的最小值.

試題解析:(1)依題意知F1,0),設(shè)直線AB的方程為.將直線AB的方程與拋物線的方程聯(lián)立,消去x.設(shè),,所以,因?yàn)?/span>,所以聯(lián)立,消去,得

所以直線AB的斜率是

2)由點(diǎn)C與原點(diǎn)O關(guān)于點(diǎn)M對(duì)稱,得M是線段OC的中點(diǎn),從而點(diǎn)O與點(diǎn)C到直線AB的距離相等,所以四邊形OACB的面積等于

因?yàn)?/span>,

所以當(dāng)m0時(shí),四邊形OACB的面積最小,最小值是4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知asinBbsinA).

1)求A;

2D是線段BC上的點(diǎn),若ADBD2,CD3,求△ADC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面四邊形中, , ,將沿折起,使得平面平面,如圖.

(1)求證: ;

(2)若中點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中,分別為線段的中點(diǎn),為四棱錐的外接球的球心,點(diǎn)分別是直線上的動(dòng)點(diǎn),記直線所成角為,則當(dāng)最小時(shí),

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,平面底面,的中點(diǎn),是棱的中點(diǎn),.

1)證明:平面平面.

2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分形幾何學(xué)是數(shù)學(xué)家伯努瓦·曼得爾布羅在20世紀(jì)70年代創(chuàng)立的一門新的數(shù)學(xué)學(xué)科,它的創(chuàng)立為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路.按照如圖甲所示的分形規(guī)律可得如圖乙所示的一個(gè)樹形圖:記圖乙中第行黑圈的個(gè)數(shù)為,則(1_______;(2______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的值;

2)定義:若直線與曲線都相切,我們稱直線為曲線、的公切線,證明:曲線總存在公切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《周髀算經(jīng)》 是我國(guó)古代的天文學(xué)和數(shù)學(xué)著作。其中一個(gè)問題的大意為:一年有二十四個(gè)節(jié)氣(如圖),每個(gè)節(jié)氣晷長(zhǎng)損益相同(即物體在太陽的照射下影子長(zhǎng)度的增加量和減少量相同).若冬至晷長(zhǎng)一丈三尺五寸,夏至晷長(zhǎng)一尺五寸(注:ー丈等于十尺,一尺等于十寸),則立冬節(jié)氣的晷長(zhǎng)為( )

A. 九尺五寸 B. 一丈五寸 C. 一丈一尺五寸 D. 一丈六尺五寸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市對(duì)所有高校學(xué)生進(jìn)行普通話水平測(cè)試,發(fā)現(xiàn)成績(jī)服從正態(tài)分布N(μ,σ2),下表用莖葉圖列舉出來抽樣出的10名學(xué)生的成績(jī).

(1)計(jì)算這10名學(xué)生的成績(jī)的均值和方差;

(2)給出正態(tài)分布的數(shù)據(jù):P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544.

由(1)估計(jì)從全市隨機(jī)抽取一名學(xué)生的成績(jī)?cè)冢?/span>76,97)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案