解答:解:(1)∵函數(shù)f(x)對任意實數(shù)x均有f(x)=-f(x+2),且當x∈[0,2]時,f(x)=x(x-2),
∴f(-1)=-f(-1+2)=-f(1)=1,
f(2.5)=-f(0.5+2)=-f(0.5)=;
(2)函數(shù)f(x)對任意實數(shù)x均有f(x)=-f(x+2),且當x∈[0,2]時,f(x)=x(x-2),
設(shè)x∈[-2,0],則0≤x+2≤2,
∴f(x)=-f(x+2)=-(x+2)(x+2-2)=-x(x+2),
設(shè)x∈[-3,-2]時,則-1≤x+2≤0,
∴f(x)=-f(x+2)=(x+2)(x+2+2)=(x+2)(x+4),
設(shè)x∈[2,3]時,則0≤x-2≤1,
f(x)=f((x-2)+2)=-f(x-2)=-(x-2)(x-2-2)=-(x-2)(x-4),
綜上所述,f(x)在[-3,3]上的表達式為
f(x)= | (x+2)(x+4),-3≤x<-2 | -x(x+2),-2≤x<0 | x(x-2),0≤x≤2 | -(x-2)(x-4),2<x≤3 |
| |
,
函數(shù)g(x)在區(qū)間[-3,3]上零點的個數(shù)即為方程g(x)=0的解得個數(shù),
由g(x)=0,得f(x)=k,函數(shù)g(x)在區(qū)間[-3,3]上零點的個數(shù)即y=f(x)與y=k的交點個數(shù),
根據(jù)f(x)在[-3,3]上的表達式以及二次函數(shù)的性質(zhì)可得,f(x)的單調(diào)性情況如下:
f(x)在[-3,-1]上為增函數(shù),在[-1,1]上為減函數(shù),在[1,3]上為增函數(shù),
又∵f(-3)=f(1)=-1,f(-1)=f(3)=1,
①當k<-1或k>1時,函數(shù)y=f(x)與直線y=k無交點,即函數(shù)g(x)無零點;
②當k=-1或k=1時,函數(shù)y=f(x)與直線y=k有2交點,即函數(shù)g(x)有2個零點;
③當-1<k<1時,函數(shù)y=f(x)與直線y=k有3交點,即函數(shù)g(x)有3個零點.
綜上所述,當k<-1或k>1時,函數(shù)g(x)無零點,
當k=-1或k=1時,函數(shù)g(x)有2個零點,
當-1<k<1時,函數(shù)g(x)有3個零點.
(3)∵函數(shù)f(x)對任意實數(shù)x均有f(x)=-f(x+2),即f(x+2)=-f(x),
∴f(x+4)=f(x+2+2)=-f(x+2)=f(x),
故函數(shù)f(x)是周期函數(shù),且周期為4,
設(shè)n∈Z,則f(x+4n)=f[x+4(n-1)+4]=f[x+4(n-1)]=…=f(x),
當x∈[4n,4n+2]時,0≤x-4n≤2,
∴f(x)=f(x-4n+4n)=f(x-4n)=(x-4n)(x-4n-2),
當x∈[4n-2,4n]時,-2≤x-4n≤0,
∴f(x)=f(x-4n+4n)=f(x-4n)=-(x-4n)(x-4n+2),
綜上所述,f(x)=
| -(x-4n)(x-4n+2),4n-2≤x≤4n | (x-4n)(x-4n-2),4n<x≤4n+2 |
| |
,n∈Z,
根據(jù)f(x)的周期性,結(jié)合(2)中的單調(diào)性,即可得到:
f(x)的單調(diào)遞減區(qū)間為[4n-1,4n+1],單調(diào)遞增區(qū)間為[4n+1,4n+3],n∈Z,
∴當x=4n-1時,f(x)有最大值1.